
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

2017

Investigate Genomic 3D Structure Using Deep
Neural Network
Yan Zhang
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Recommended Citation
Zhang, Y.(2017). Investigate Genomic 3D Structure Using Deep Neural Network. (Doctoral dissertation). Retrieved from
https://scholarcommons.sc.edu/etd/4491

https://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/4491?utm_source=scholarcommons.sc.edu%2Fetd%2F4491&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

Investigate genomic 3D structure using deep Neural network

by

Yan Zhang

Bachelor of Science
Shandong University, 2009

Master of Science
The University of Alabama, 2011

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science

College of Engineering and Computing

University of South Carolina

2017

Accepted by:

Jijun Tang, Major Professor

Gabriel A. Terejanu, Committee Member

John R. Rose, Committee Member

Yan Tong, Committee Member

Jiajia Zhang, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School



www.manaraa.com

© Copyright by Yan Zhang, 2017
All Rights Reserved.

ii



www.manaraa.com

Acknowledgments

First and foremost I wish to gratefully and sincerely thank my advisor Dr. Jijun

Tang for his guidance, understanding, patience. He encourages me to discover my

real passion in research, and also provided continuous guidance, understanding, and

patience along the way. Also, his mentorship was paramount in providing a well-

rounded experience consistent my long-term career goals.

I would like to thank all my committee members: Dr. Rose, Dr. Terejanu, Dr.

Tong, and Dr. Zhang for their willingnesses to serve on my dissertation committee

and their valuable comments.

I would also like to thank Dr. Feng Yue from Penn. State Univ. for his guidance

and assistance in research topic as well as the advice in writing. I am very grateful

for the friendship and cooperation with him.

I would like to acknowledge my wife, my parents and my parents-in-law for their

support and encouragement to finish my Ph.D.

iii



www.manaraa.com

Abstract

The 3D structures of the chromosomes play fundamental roles in essential cellular

functions, e.g., gene regulation, gene expression, evolution and Hi-C technique pro-

vides the interaction density between loci on chromosomes. In this dissertation, we

developed multiple algorithms, focusing the deep learning approach, to study the

Hi-C datasets and the genomic 3D structures.

Building 3D structure of the genome one of the most critical purpose of the Hi-C

technique. Recently, several approaches have been developed to reconstruct the 3D

model of the chromosomes from HiC data. However, all of the methods are based

on a particular mathematical model and lack of flexibility for new development.We

introduce a novel approach using the genetic algorithm. Our approach is flexible to

accept any mathematical models to build a 3D chromosomal structure. Also, our

approach outperforms current techniques in accuracy.

Although an increasing number of Hi-C datasets have been generated in a variety

of tissue/cell types, Due to high sequencing cost, the resolution of most Hi-C datasets

are coarse and cannot be used to infer important biological functions (e.g., enhancer-

promoter interactions, and link disease-related non-coding variants to their target

genes). To address this challenge, we develop HiCPlus, a computational approach

based on deep convolutional neural network, to infer high-resolution Hi-C interaction

matrices from low-resolution Hi-C data. Through extensive testing, we demonstrate

that HiCPlus can impute interaction matrices highly similar to original ones while

using only as few as 1/16 of the total sequencing reads. We observe that Hi-C inter-

action matrix contains unique local features that are consistent across di�erent cell
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types, and such features can be e�ectively captured by the deep learning framework.

We further apply HiCPlus to enhance and expand the usability of Hi-C datasets in a

variety of tissue and cell types. In summary, our work not only provides a framework

to generate high-resolution Hi-C matrix with a fraction of the sequencing cost but

also reveals features underlying the formation of 3D chromatin interactions.

The noise level in the Hi-C is high, and the structure of the noise is complicated.

Also, even under most strict experimental conditions, the absolute noise-free Hi-C

data still cannot be obtained. We proposed a novel approach to learn a denoising

network without clean data. Our approach employs Siamese structure, utilizing two

replicates of the same experimental settings to train the model; the resulting model

can then be applied to datasets where only one replicate is available. We applied our

new approach to enhance Hi-C data, an important type of data in exploring three-

dimensional genomic structures. The results prove that the model trained by our

method significantly reduce the noise level in Hi-C data.

In the past few years, we have seen an explosion of Hi-C data in a variety of

cell/tissue types. While these publicly available data presents an unprecedented op-

portunity to interrogate chromosomal architecture, how to quantitatively compare

Hi-C data from di�erent tissues and identify tissue-specific chromatin interactions

remains challenging. We developed HiCComp, a comprehensive framework for com-

paring Hi-C data. HiCComp utilizes convolutional neural networks to extract key

features in Hi-C interaction matrices in a fully automatic way. The core component

of HiCComp is a triplet network, which contains three identical convolutional neural

networks with shared parameters. The inputs to our network are three Hi-C ma-

trices: two of them are biological replicates from the same cell type, and the third

one is from another cell type. The HiCComp network takes advantages of the two

biological replicates to estimate the natural variation in the experiments and fur-

ther use it to identify significant variations between Hi-C matrices from di�erent cell
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types. Furthermore, we incorporate systematic occluding method into our framework

so that we can identify the dynamic interaction regions from Hi-C maps. Finally, we

show that the dynamic regions between two cell types are enriched for transcription

factor binding sites and histone modifications that are associated with cis-regulatory

functions, suggesting these variations in 3D genome structure are potentially gene

regulatory events.
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Chapter 1

Introduction

Epigenomics (also know as “epigenetics”) studies the chromosomal states variations

which are associated with cellular functions but do not involve the modification of

DNA sequences. All types of cells in the body essentially share the same genome

from the single fertilized egg, and epigenomic factors are the interpretation of the

specific identities of di�erent cell types (Consortium et al. 2012). The research in

epigenomics contributes to answer a series of fundamental biological functions such

as:

• What are the key regulatory elements determine the gene expressions in di�erent

tissues/cell types?

• What is the control mechanism in the development of embryos?

• What are factors contributing to the cellular functions?

Because of advances in high-throughput experimental techniques, a broad range of

epigenomic states can be detected including modifications of DNA molecules, DNA-

protein bindings, and genomic 3D conformations. In this dissertation, we will focus

on the genomic 3D conformation, and its connection to other epigenomic states.

Due to the importance of epigenomics, a large volume of epigenomic data has been

published, and several projects, including NIH Roadmap (www.roadmapepigenomics.

org/) and ENCODE (https://www.encodeproject.org/) are aiming to systemi-

cally perform experiments to measure epigenomic markers in a varieties of cell lines
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and tissue types. Therefore, it is urgent to develop algorithms and computational

tools to analyze epigenomic data from experiments.

Deep learning is a rapidly developing technique in recent years and has achieved

great success in many domains, including computer vision, natural language process

and even playing Go (LeCun, Bengio, and G. Hinton 2015; Goodfellow, Bengio, and

Courville 2016; Silver et al. 2016). Unlike conventional machine-learning techniques,

such as logistic regression or SVM, deep learning allows the model to directly process

the natural data in their raw form (e.g. the pixels on an image or the nucleotide on

the genome) without much domain expertise and feature engineering process.

Epigenomics is an emerging field, yet the methods to analyze high-throughput

epigenomic data is very limited. In this dissertation, we employ deep learning tech-

niques to develop algorithms for the analysis of epigenomic data, focusing on data

related to genomic 3D structures.

1.1 Biological background

1.1.1 Epigenomics

As we discussed previously, di�erent types of cells have the same set of genome. Cell

types utilized in the epigenomic research are classified as two types: tissues and cell

lines. Tissues (e.g. brain, muscle, liver) are real human cells, while cell lines (e.g.

GM12878, IMR90, K562) are the standard cells under treatment in vitro. Since the

source of tissues is limited and the epigenomic state of tissues may vary across di�erent

individuals, many research employs cell lines to investigate epigenomic properties.

Traditionally, the di�erence across cell types can only be observed by their func-

tions with limited and incomplete data available (as shown in the brown part In

Fig. 1.5). As the development of high-throughput sequencing techniques, the de-

tection of chromosomal global state has become possible. Currently, most of the

epigenomic studies are focused on the following two aspect:
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• The event along the DNA sequence on the genome: The events include

proteins binding on the DNA string and the modification of the histone, which

the DNA string wrapping around.

• The spatial conformation of the genome: The spatial structure of the

chromosome plays a significant role in gene functions, e.g., gene regulation,

gene expression (Misteli 2007; T. Cremer and C. Cremer 2001; Sexton et al.

2007; P. Fraser and W. Bickmore 2007; W. A. Bickmore 2013) and cell di�er-

entiation (J. R. Dixon et al. 2015). The 3D structure of chromosomes is very

complicated as we need to pack 3 billion base pairs into a space no bigger than

10 microns in diameter.

1.1.2 Experimental techniques to obtain high-throughput epigenomic data

In the epigenomic field, the key part is to determine the locations of the epigenomic

events. Thanks to the development of DNA sequencing technologies in past several

decades, the reference genome of many species have already been built. Therefore, the

location of the event can be represented as the location on the DNA of the reference

genome (e.g. chromosome 1: 1000000-1000200).

The other key technique contributes to the advances in epigenomic studies is short

DNA segment sequencing technique, which enables us to sequence a large volume

short DNA segments (also names as “reads”) in relative cheap prices. Coupling with

the progress in the sequencing mapping algorithm (H. Li and Durbin 2009), we can

locate the original locations of these short DNA segments (Fig. 1.1).

Figure 1.1: Determine the location of the short DNA sequencing reads on the reference
genome.
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Chip-seq Chip-seq (Johnson et al. 2007) is a class of techniques to detect the epige-

nomic state along the DNA sequence. To sequence the DNA reads, the entire DNA

string is cut into small segments, and traces of the epigenomic states on the loca-

tion(e.g., protein binding) can be catches by the experiment techniques named chro-

matin immunoprecipitation(ChIP), which can precipitate the DNA segments with a

specific state(e.g., binding to a certain kind of protein). By sequencing the precipi-

tated DNA segments only, we can obtain the locations of the distribution of the state

on the entire genome and the process of Chip-seq is shown in Fig. 1.2.

Figure 1.2: The mechanism of the Chip-seq to capture the epigenomic event on the
DNA sequence.

Figure 1.2a shows the epigenomic state of the four cell types. Although these

four cell types share the same set of DNA sequence, they have di�erent epigenomic

events at di�erent locations, and the events may include (but not limited to) protein

bindings and histone modifications. To determine the location of such events, the

DNA string is cut to small segments; then the segments with specific type of event

are separated from other segments. The filtered small DNA segments of the DNA

string are sequenced and mapped to the reference genome to obtain the coordination

of these pieces on the reference genome . Since the experiment is performed on a

group of cells, each location may have multiple DNA sequencing reads as shown in
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Fig. 1.2b.

Figure 1.3: The mechanism of the Hi-C to capture the crosslink from the 3D structure
of the chromosomes.

Hi-C Hi-C is a technique to detect the interaction between two loci on the genome.

As genomes are packed in a very small space, it is still impossible to directly observe

their structure through equipment such as microscopes (Marti-Renom and Mirny

2011). Consequently, Hi-C is the major approach to detect the 3D structure of the

genome.

Similar to Chip-seq, Hi-C also employs the sequencing and mapping technique to

determine the original locations of DNA segments. The di�erence between Hi-C and

Chip-Seq is the process to generate the short DNA segments. The following are the

general steps for the Hi-C experiment.

1. Cross-linking the DNA string on the genome. In this step, the formaldehyde is

employed to bind two loci on DNA string, and the loci with shorter distance in

3D space has higher chance to be cross-linked (Fig. 1.3a).
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2. The DNA string is cut into small pieces, and only the cross-linked DNA seg-

ments are kept in the filter process.

3. The obtained DNA segments are sequenced and mapped to the reference genome

(Fig. 1.3b)

4. The number of the cross-linked DNA segments between each pair of loci are

calculated to obtain the Hi-C signal intensities. The Hi-C experiment produces

a 2D matrix and the bins on the matrix are fixed-size, non-overlapping and

continuous windows along the DNA sequence Fig. 1.3c.

Figure 1.4: The Hi-C data represented by heatmap.

For the Hi-C data, each bin on the matrix of Fig. 1.3c is from 5k bp to 100k bp

and the size of the matrix is millions by millions for the entire genome. Therefore,

it is impossible to present the Hi-C data matrix using the exact number of reads. A

common way to represent the Hi-C matrix is to use heatmap as shown in Fig. 1.4.

In Fig. 1.4, each bin on the matrix represents a 25k bp region, so the Fig. 1.4a shows

the Hi-C data from 25M bp, which covers one third of chromosome 18, the smallest

chromosomes in human.

ChIA-PET Besides 3C-based methods, Chromatin Interaction Analysis by Paired-

End Tag Sequencing (ChIA-PET) (Fullwood et al. 2009) is another insightful ap-

proach to detect genome-wide interaction intensities. ChIA-PET combines chromatin
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immunoprecipitation (ChIP)-based enrichment (Johnson et al. 2007), chromatin prox-

imity ligation and high-throughput pair-end sequencing techniques to detect the inter-

action intensities between several protein-binding regions on the genome (Fullwood

et al. 2009; Bonev and Cavalli 2016; Tang et al. 2015). Compared with the Hi-C

technique, ChIA-PET only detects the region where the DNA is bound with target

proteins rather than the entire genome. Therefore, ChIA-PET can only give the in-

teraction intensities between the loci from a subset of the genomic region, making

ChIA-PET more e�ciency in detecting a specific kind of the genomic interactions.

In Fig. 1.5, we summarize the available high-throughput epigenomic data sets

and their relationship to the biological meanings. The blue region covers the hidden

state of the epigenomic state of a cell, and most of the factors and their relationship

are still largely unknown. Traditionally, some of the functions of the cell can be

observed and validated by experiments but most of such observations are very limited

and incomplete. As the development of the high-throughput sequencing technique,

the detection of the chromosomal global state become possible, and the most used

techniques in the epigenomics are named Chip-Seq, ChIA-PET and Hi-C. The Chip-

seq technique reflected the 1D characters along the DNA sequencing, such as the

protein binding and the biochemical properties changes on the DNA string. Hi-C,

which are the core data sets in this dissertation, detect the interaction between two

loci on the DNA string and provide the information of the 3D structures. ChIA-PET

can be considered as the combination of Hi-C and Chip-seq.

1.2 Deep learning

1.2.1 The development of Deep Learning

The deep learning is also called deep neural networks. The concept of the neuron,

which is the basic unit in any deep neural network, was raised by McCulloch at 1943

based on the model of brain function (McCulloch and Pitts 1943). The perceptron
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Figure 1.5: Available data in epigenomic research and corresponding relationship to
the biological meanings. Hi-C, ChIA-PET and Chip-seq are major technique to detect
the global states of the genome.

algorithm was invented in 1958, which enables the training of a single neuron (Rosen-

blatt 1958). In 1980s, Rumelhart and co-workers developed the back-propagation

algorithm, which allows us to train a neural network with one or two hidden lay-

ers (D. Williams and G. Hinton 1986), and the back-propagation is still the major

training strategy in today’s deep learning. Before 2000s, the deep learning usually

called artificial neural network (ANN). The term deep learning was introduced in

mid-2000s when researchers can train the deeper neural network which is impossi-

ble to train before (G. E. Hinton, Osindero, and Teh 2006; Bengio, LeCun, et al.

2007; Poultney, Chopra, Cun, et al. 2007). Training a deeper neural network is the

key point of this wave of the rapidly development in achine learning and artificial

intelligence.

The performance of the neural network gradually increases in the past several

decades. The explosive development of deep learning comes from the dramatic mo-

ment when a convolutional neural network win the Large Scale Visual Recognition
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Challenge (ILSVRC) in 2012 and cut the error rate nearly in half (from 26.1% to

15.3%) (Krizhevsky, Sutskever, and G. E. Hinton 2012). In computer vision, deep

learning also achieve tremendous success in object detection and image segmenta-

tion (Clement Farabet et al. 2013; Clément Farabet et al. 2012; Sermanet et al.

2013). Introducing deep learning to speech recognition also result the sudden drop

in the error rate at the beginning of 2010s (Dahl et al. 2012; A.-r. Mohamed, Dahl,

and G. Hinton 2012; Graves, A.-r. Mohamed, and G. Hinton 2013)

1.2.2 Deep Learning in Genomics and Epigenomics

In 2015, two individual groups (Alipanahi et al. 2015; Jian Zhou and Troyanskaya

2015) published their works to predict the locations of protein binding sites on the

DNA string using deep learning from the DNA sequence only. The works open

the era of deep learning in epigenomics. Finding functional related DNA patterns

(DNA motif) is relied on the manually feature engineering in the past, and the deep

learning technique provides a fully automatic procedure to detect such patterns. In

these ground-breaking works, most of the patterns extracted by the previous work

in a manual way are also discovered by the deep neural network (Alipanahi et al.

2015). Also, several new patterns are revealed to be important to the epigenomic

functions. Several followed-up work using improved network topology to enhance the

performance of the deep neural network (Kelley, Snoek, and Rinn 2016; Quang and

X. Xie 2016; H. Zeng et al. 2016).

1.2.3 Deep learning in studying genomic 3D structures

High-throughput epigenomic data sets, including Hi-C, are usually huge in volume,

so the data cannot be processed in a manual way like the traditional experimental

data in the biological studies, and automatically processing pipeline is highly needed.

In addition, epigenomic data sets, including Hi-C, are usually in high dimensions,
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high noise level and complicated in the structures. Also, comparing with images and

natural languages, epigenomic datasets are brand new to human, making it harder

to manually exploring the features in the epigenomic data.

In deep learning, the deep neural network can automatically extract patterns

based on the training data sets without the need of manual intervention, making it

possible to develop automated pipelines for the epigenomic data analysis. Further-

more, deep learning requires a large volume of training data, which also agree with

the properties of epigenomic data sets.

Although the data amount is large, epigenomic data sets are usually not well-

formatted. In deep learning (deep learning only refer to the discriminative model in

this dissertation), the neural networks are employed to reflect the generalized mapping

relationship between the input data X and the output data (also called labels) Y . In

epigenomics, to develop a deep learning algorithm, the essential part is to properly

define the X and Y based on the domain knowledge. Designing a loss function for the

training that accurately reflecting the biological facts is the essential step to develop

such an algorithm.

In our work, we have developed multiple algorithms to solve the fundamental

problems in 3D genomics, including constructing genomic spatial structure, experi-

mental data enhancement, and the comparative analysis of the 3D features. To our

best knowledge, we are the pioneer to apply the deep learning technique to Hi-C data

and 3D genomics. We focused on the demands from the biological research as well as

the latest advances in the deep learning, and solve the biological problems from the

basic scientific fact without many detailed assumptions. Our algorithms emphasize

employing the automatically analyze pipeline to discover the biological finding with

least manual interventions.

Our research outcomes have been presented in multiple academic conferences as

well as preprint servers, and attracted wide interest. Several publications in academic
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journals and/or academic proceedings have been accepted and under reviewing.
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Chapter 2

A Flexible Approach to Reconstruct the

Genomic Spatial Structure by the Genetic

Algorithm

2.1 Introduction

The Hi-C technique (Lieberman-Aiden et al. 2009) is designed to detect the 3D struc-

tures of the genomes, so recovering the 3D structure from the Hi-C data is one of

the fundamental task. As the development of the Hi-C technique, a lot of approaches

have been proposed to reconstruct the spatial structure of chromosomes (Duan et al.

2010; Baù and Marti-Renom 2011; Tanizawa et al. 2010; Hu et al. 2013; Varoquaux

et al. 2014; Rousseau et al. 2011; S. Wang, J. Xu, and J. Zeng 2015; Z. Zhang et al.

2013; Trieu and Cheng 2014; Trieu and Cheng 2015; Peng et al. 2013; Shavit, Hamey,

and Lio 2014; Nowotny et al. 2015; Lesne et al. 2014). All of these reconstruction

processes consist of two stages: 1) proposing an objective function to evaluate how the

3D structure reflects the Hi-C experimental data, and converting the problem to an

optimization problem; 2) developing the algorithm to solve the proposed optimization

problem and obtaining the 3D structures.

The objective function reflects the quantitative model for the relationship between

the 3D structure and the Hi-C experimental data. Currently, several quantitative

models have been proposed to reconstruct the 3D structures. However, whether

these models are appropriate in all the conditions is still a controversy. Also, the Hi-
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C field is rapidly developing, and new models are proposed periodically with the new

discoveries. However, in most of the current work, the optimization algorithms have

already integrated with the objective function. The optimization tool can only solve a

particular objective function. Thus, a flexible and model-free approach is sometimes

desirable. In this work, we develop a model-free optimization tool for obtaining the

optimized chromosomal 3D structure using a genetic algorithm (GA).

The genetic algorithm (GA) (Davis 1991; Weise 2009) is a randomized heuristic

search strategy which is inspired by the evolutionary process in nature. The genetic

algorithm is widely used in the non-linear optimization problems. The objective

function is named fitness function. Genetic algorithms have already successfully im-

plemented to reconstruct 3D structures from pair-wise interaction matrix obtaining

from experiments for atomic cluster (Deaven and K. Ho 1995; Chua et al. 2010)

and protein (Bowie and Eisenberg 1994; Bayley et al. 1998; Ono et al. 2002; Gar-

diner, Willett, and Artymiuk 2001). However, since the Hi-C is a recently developed

technique, very few researchers have employed the GA to solve the 3D structure of

chromosomes (Nowotny et al. 2015). Comparing with other optimization strategies,

the genetic algorithm has several advantages: 1) Fewer assumptions and less manual

intrusions are required for the fitness function in genetic algorithm; 2) Genetic al-

gorithm has better performance to overcome the local optimal problems than other

approaches (Meza et al. 1996); 3) The optimization goal is flexible via modifying the

fitness function, which is essential for a rapidly developing field where new models are

raised up very often. Also, the building-block hypothesis, an important assumption

of GA (Golberg 1989), is exactly fit for the current understanding of 3D genomic

structures since the Hi-C experiment has revealed the local compact substructure at

di�erent scale levels (Lieberman-Aiden et al. 2009; J. R. Dixon et al. 2012; Rao et al.

2014).
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2.2 Methods

In the genetic algorithm, a certain number of candidate solutions are maintained

during the entire process of searching for the optimal solution. The candidate solu-

tions’ pool is named population. A single candidate solution in the pool is named an

individual. The population keeps updating to obtain the optimal candidate.

The steps of genetic algorithm include: 1) Initialization, 2) Selection, 3)Mutation

and Crossover, 4) Termination. Step 2 and 3 run iteratively until the termination

condition is reached.

New individuals of the next generation are created by the genetic operators in-

cluding crossover and mutation, in which processes, the fitter individuals have more

chance to be selected while the diversity is kept. The fitness function, which reflects

the optimization goals, is used to evaluate the fit level for individuals.

2.2.1 Fitness Function

In our specific problem, the fitness function is to evaluate fitness level the proposed

3D structure with the Hi-C experimental data quantitatively. In previous work, the

fitness level is measured based on the total absolute error value or the probability. In

the total error value model, Hi-C interaction numbers are directly converted to the

spatial distances. The Hi-C interaction map is converted to the pair-wise distance

matrix. Then the fitness level of proposed 3D structure is evaluated by calculat-

ing the sum of the error value between all pair-wise distances in the 3D structure

and the Eq.2.1 is one of the most commonly used functions in the distance-based

model (Duan et al. 2010; Baù and Marti-Renom 2011; Tanizawa et al. 2010; Hu et al.

2013; Varoquaux et al. 2014; Rousseau et al. 2011; S. Wang, J. Xu, and J. Zeng 2015).

Fitness Score =
nÿ

i=1

nÿ

j=i+1

(DC
ij

≠ DH
ij

)2 (2.1)
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where DH
ij

is the distance converted from the Hi-C interaction matrix and DC
ij

is

the distance computed from the proposal 3D structure.

The error value model is easy to be understood, and it is relatively less computa-

tion intensive. However, the error value model are based on the assumption that the

chromosome has a single structure. However, the Hi-C experiment employs a large

group of the cells. Alternative methods for the 3D chromosome structure applied

the statistical approaches to building probabilistic model (Hu et al. 2013; Varoquaux

et al. 2014; Rousseau et al. 2011; S. Wang, J. Xu, and J. Zeng 2015). Eq. 2.2 is

an example of using Poisson distribution to obtain the probability of the proposed

structures. The Hi-C experiment utilized a large group of cells. The number of in-

teractions observed for each pair of location is following binomial distribution. In

the Hi-C experiment condition, the number of cells is enormous, and the probability

of ligation is small. The binomial distribution is approximate to Poisson distribu-

tion. Therefore, Poisson probability model is the better fit to the nature of the Hi-C

experiment.

Fitness Score = ≠
nÿ

i=1

nÿ

j=i+1

log(P (D
ij

, E
ij

)) (2.2)

where P is the Probability Density Function(PDF) of Poisson distribution, D
ij

is the

actual Hi-C interaction number (integer) and E
ij

is the expected Hi-C interaction

number from proposal structure (float).

In both of the approaches, the Hi-C interaction numbers need to be converted to

distances or expected distances. In our GA framework, the conversion equation is

determined by the user. For testing purpose, we use Eq. 2.3 the make the conversion.

DH
ij

= 1
H

ij

n + const
, (2.3)

where DH
ij

is the distance converted from the Hi-C interaction matrix, H
ij

is the

Hi-C interaction number , and const is parameter to control the conversion
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2.2.2 Detailed Algorithm

The initial population is generated by the random process. If no 3D structure from

the other sources is imported, all of the initial structures at the beginning of the

genetic algorithm are generated by random number generator within a certain scale

to spread the population across the large searching space. If needed, the genetic

algorithm can also adopt the result from other optimization tools to perform the

further optimization. In this case, the initial population composed both of the random

generators as well as the 3D structure from user input.

Selection Strategy

The principle of the selection is that better individuals have larger chance to mate

and pass their properties to the next generation. At the beginning of the selection

process, all of the current candidates are sorted based on the fitness scores. The best

candidates (usually around top 1%) in the candidate’s pool are directly selected to

add the next generation’s pool without any change. Then a roulette wheel process

is performed to choose the candidates to the crossover and mutation process. The

selection is based on the ranking of the candidate solution, and a ranking score is

assigned as Eq. 2.4.

Ranking Score(RS) = 1
rank + constant number

(2.4)

where rank is the position of the candidate sorted by fitness score, constant is the

parameter to adjust the generation gap.

For each selection, the probability of an individual to be selected is proportional

to its rank score and probability of selection is shown in Eq. 2.5

P
i

= RS
i

1q
j=N

RS
j

(2.5)
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where P
i

is the probability of individual i to be selected, RS
i

is ranking score of

individual i, and N is size of the total candidate pool.

Each selection process is independent and doesn’t change the status of the indi-

vidual pools. The selection process keeps running to pick the candidates solution as

parents for the crossover until crossover stage finishes.

Crossover

Crossover is analogous to reproduction in the biological crossover. Children are gen-

erated based on its parents in the crossover. In our work, two candidate solutions are

picked up independently from the selection process and two children are produced

from a pair of parents by the crossover. Assume two parents are P
1

and P
2

, two

children are C
1

and C
2

, and the number of the beads for each is k. The P [i] indicates

the spatial position of ith bead on the candidate solution P . Steps of the crossover

includes: 1) random numbers R between 2 to K ≠ 1 is generated; 2) Translocate the

spatial position of P
1

and P
2

to make P
1

[R] and P
2

[R] are both (0, 0, 0); 3) Produce

child C
1

with P
1

[1...R] and P
2

[R + 1...K] and produce child C
2

with P
2

[1...R] and

P
1

[R + 1, K]. 4) The fitness score is calculated for C
1

and C
2

based on their new 3D

coordinates.

Mutation

The mutation is performed in place on the children from the crossover. In the muta-

tion operation, the particular percentage of 3D points are aligned to the new location

based on the normal distribution with the mean value being their original position.

The percentage of individuals selected, the proportion of beads changed and the devi-

ation of the distribution are determined by the user, and they are relevant parameters

in a genetic algorithm.
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2.3 Experimental Results

Figure 2.1: Performance of the independent experiments under the identical condi-
tion. We employed the same Hi-C interaction data, the same model and the same
parameters to run independent experiments for 500 times to investigate the stability
of our implementation of the genetic algorithm between di�erent runs.

2.3.1 Consistency of genetic algorithm

Similar to the other heuristic methods, the genetic algorithm involves a random pro-

cess in several steps. Therefore, di�erent runs for the same program with identical

parameters and inputs may lead to di�erent results. It is important to study the

di�erence between same sample and parameters in multiple runs. The di�erence

between independent experiment with the same input and same setting should be

within a reasonable range. If multiple parallel runs give a quite di�erent result, the

possible reason is the result not reached the converge points or the result was trapped

at local optimal. The parameter needs to be improved.

To test the stability of performance from run to run, we ran the genetic algorithm

500 independent experiments at the exact same condition, including the inputs, math-

ematical model and parameters. We employed the probability model based on Poisson

distribution. The fitness score is calculated by the minus log conditional probability
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in Eq. 2.2 The result is shown in Fig. 2.1. The curve is the average of all of the runs

at each point, and the bar is the two times of the standard deviation. As expected,

at the begining, the result of each run is quite di�erent with each other because of

the random initialization. As the selection pressure from the objective function and

selection process, the results tend to be similar. The result reach converges at around

10000 generations since the deviation and average are not decreasing anymore.

(a) (b)

(c) (d)

Figure 2.2: Performance of the MDS method and the Genetic Algorithm (GA) for
minimizing the error value for di�erent size of problems.

2.3.2 Comparing with MDS-based method

Several approaches convert the 3D structure recovery problem to a multidimensional-

Scaling (MDS) problem and solve MDS problems (Lesne et al. 2014; Segal and Bengts-

son 2015; Varoquaux et al. 2014). Some mathematically software packages, such

19



www.manaraa.com

as C++ GNU IPOPT (Wächter and Biegler 2006) and Python Scikit (Pedregosa

et al. 2011), can be directly utilized to solve the error minimization problem. To

compare the performance between MDS-base approach and the genetic algorithm

head-to-head, we implement the same goal function (Eq.2.1) for both optimization

approaches. We studied the performance of the MDS and the GA at four di�erent

scales. For each scale, we randomly chose 10 qualified samples from the entire Hi-C

interaction map. For each sample, both GA and MDS experiments were carried out

ten times to get the statistical result as shown in Fig. 2.2. The MDS package is

from the Python Scikit’s method (Pedregosa et al. 2011) and all of the parameters is

default except the number of steps. The parameters for the genetic algorithm are also

default without particular optimization. The bar is two times of standard deviation.

At all of the cases, the genetic algorithm outperforms the conventional MDS-based

method. It is worth to notice that the standard deviation is nearly zero for many

MDS results, indicating the MDS optimization method quickly falls into the same

local optimal.

2.3.3 Comparing with the other approaches

We also compared the performance of our approach with the other approaches in the

similar model. Hu and coworkers (Hu et al. 2013) developed Bayesian 3D constructor

for Hi-C data (BACH) to infer the consensus 3D chromosomal structure. The object

function of the BACH model is based on the Poisson probability density function and

also incorporate the physical properties of the genome to improve the model accuracy.

The model also includes a series of nuisance parameters which are also considered in

the optimization step. The objective function is shown in Eq. 2.6 and 2.7.

logP =
ÿ

1<i<j<n

PDF
Poisson

(U
ij

, ◊
ij

) (2.6)
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where P is probability of the 3D structure at given condition, and PDF is probability

density function

log◊
ij

= log(◊
0

+ ◊
1

log(d
ij

) + ◊
2

log(e
i

e
j

) + ◊
3

log(g
i

e
j

) + ◊
4

log(m
i

e
j

)) (2.7)

where is u
ij

is the Hi-C interaction number between loci i and j, ◊
i

is Nuisance pa-

rameter , and the
i

, g
i

, m
i

are properties of the chromosome and refer to (Hu et al.

2013) for detail.

The BACH employs Markov chain Monte Carlo (MCMC) to maximize the proba-

bility and obtain the 3D structure. The process optimizes 3D structure and nuisance

parameters iteratively. To compare the performance between the original MCMC

method and the genetic algorithm, we implemented the same objective function as

the fitness function in the genetic algorithm. Also, we configured our program to

optimize the 3D structures and nuisance parameters by the genetic algorithm itera-

tively. The result is shown in Fig. 2.3. The samples input provided by Hu (Hu et al.

2013) was employed as the input for both BACH and GA test. We first ran BACH

for di�erent iteration to observe the results. The BACH uses an e�cient MCMC

method to obtain the 3D structure and nuisance parameters. Fig. 2.3a shows the

result convergence very quick at the early stage of the process and the computation

speed is very fast. However, the BACH approaches stuck in local optimal and cannot

further improve. We start from the random initialization and show the result in the

Fig. 2.3b. The genetic algorithm initially converges slowly but eventually the result

outperform the BACH approach. To facility the genetic algorithm, we implemented

an improved version of the genetic algorithm to take advantage existing BACH result.

As shown in Fig.Hi-C 2.3b, both accuracy and converge speed are improved if we take

BACH result as starting point of the genetic algorithm.

We also compared the performance in accuracy with PASTIS (Varoquaux et al.

2014), which also applied the Poisson model as the objective function. We evaluated
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(a) (b)

Figure 2.3: Compare the performance of GA and BACH approaches based on the
same model in original BACH algorithm. For comparison purpose, the horizontal bar
is the best result obtained by BACH

the probability of the structure calculated by the PASTIS package in Fig. 2.4. The

PASTIS converge speed is very quick, so we just draw a horizontal bar to represent the

optimal result from the PASTIS. When the computation time is short, the PASTIS

generates better result comparing with the genetic algorithm. After computing several

thousands of iteration, the genetic algorithm eventually outperforms the PASTIS in

accuracy.

Figure 2.4: Compare the performance of GA and PASTIS. The red line is the perfor-
mance provided by PASTIS, and the blue line is the performance of our GA approach.
The performance of GA exceed that of PASTIS after 100 iterations
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2.4 Discussion

Our approach employs the genetic algorithm to reconstruct the spatial structure from

the Hi-C interaction data. Our approach outperforms the performance of several of

the current approaches in accuracy under the same biological model. Besides the

advantage in accuracy, our approach is flexible to all kinds of the biological model,

which is of great importance in such a rapidly developing field. It is easy to switch the

biology model between distance model and probability model. The relevant software

package (GA3D) can run stand alone as well as work together with results from other

software to facility the computation speed and obtain the better result.
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Chapter 3

HiCPlus: a deep convolutional neural network

for Hi-C interaction matrix enhancement

3.1 Introduction

The Hi-C technique (Lieberman-Aiden et al. 2009) has emerged as a powerful tool for

studying the spatial organization of chromosomes, as it measures all pair-wise inter-

action frequencies across the entire genome. In the past several years, Hi-C technique

has facilitated several exciting discoveries, such as A/B compartment (Lieberman-

Aiden et al. 2009), Topological Associating Domains (TADs) (J. R. Dixon et al.

2012; Nora et al. 2012), chromatin loops (Rao et al. 2014) and Frequently Interact-

ing Regions (FIREs) (A. D. Schmitt et al. 2016), and therefore significantly expanded

our understanding of 3D genome organization (Lieberman-Aiden et al. 2009; J. R.

Dixon et al. 2012; Rao et al. 2014) and gene regulation machinery (A. D. Schmitt,

Hu, and Ren 2016).

Hi-C data is usually presented as a n ◊ n contact matrix, where the genome is

divided into n equally sized bins and the value within each cell of the matrix indicates

the number of pair-ended reads spanning between a pair of bins. Depending on

sequencing depths, the commonly used sizes of these bins can range from 1 kb to 1

Mb. The bin size of Hi-C interaction matrix is also referred to as ’resolution’, which

is one of the most important parameters for Hi-C data analysis, as it directly a�ects

the results of downstream analysis, such as predicting enhancer-promoter interactions

or identifying TADs boundaries.
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Sequencing depth is the most crucial factor in determining the resolution of Hi-C

data - the higher the depth, the higher the resolution (thus the smaller bin size). Due

to high sequencing cost, most available Hi-C datasets have relatively low resolution

such as 25 or 40 kb, as the linear increase of resolution requires a quadratic increase in

the total number of sequencing reads (A. D. Schmitt, Hu, and Ren 2016). These low

resolution Hi-C datasets can be used to define large-scale genomic patterns such as

A/B compartment or TADs, but cannot be used to identify more refined structures

such as sub-domains or enhancer-promoter interactions. Therefore, it is urgent to

develop a computational approach to take full advantage of these currently available

Hi-C datasets to generate higher resolution Hi-C interaction matrix.

Recently, deep learning has achieved great success in several disciplines (LeCun,

Bengio, and G. Hinton 2015; Schmidhuber 2015; Goodfellow, Bengio, and Courville

2016), as well as computational epigenomics (Koh, Pierson, and Kundaje 2017;

Angermueller et al. 2016; Schreiber et al. 2017; F. Liu et al. 2016). In particular,

Deep Convolutional Neural Network (ConvNet) (LeCun, Bengio, and G. Hinton

2015; LeCun et al. 1998), which is inspired by the organization of the animal visual

cortex (LeCun et al. 1998; Fukushima 1980; Serre et al. 2007), has made major

advancement in computer vision and natural language processing (LeCun et al. 1998).

In the fields of computational biology and genomics, ConvNet have been successfully

implemented to predict the functional targets of DNA sequence (Jian Zhou and

Troyanskaya 2015; Alipanahi et al. 2015; Kelley, Snoek, and Rinn 2016; H. Zeng

et al. 2016; Quang and X. Xie 2016; Jiyun Zhou et al. 2016) as well as the epigenetic

states (e.g. methylations and gene expression levels) from experimental assays (Singh

et al. 2016; Angermueller et al. 2017; Min et al. 2016; Y.-z. Zhang et al. 2017).

In this chapter, we propose HiCPlus, which is the first approach to infer high-

resolution Hi-C interaction matrices from low-resolution or insu�ciently sequenced

Hi-C samples. Our approach is inspired by the most recent advancements (Glasner,
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Bagon, and Irani 2009; J. Yang et al. 2008; Dong et al. 2016; Dong et al. 2014) in

the single image super-resolution, and can generate the Hi-C interaction matrices

with the similar quality as the original ones, while using as few as 1/16 of sequencing

reads. We observe Hi-C matrices are composed by a series of low-level local patterns,

which are shared across all cell types. We systematically applied HiCPlus to generate

high-resolution matrix for 20 tissue/cell lines (total 22 replicates) where only low

resolution Hi-C datasets are available, covering a large variety of human tissues. In

summary, this work provides a great resource for the study of chromatin interactions,

establishes a framework to predict high-resolution Hi-C matrix with a fraction of

sequencing cost, and identifies potential features underlying the formation of 3D

chromatin interactions.

3.2 Method

3.2.1 Overview of the framework

Figure 3.1: HiCPlus leverages information from surrounding regions to estimate con-
tact frequency for a given point in a Hi-C interaction matrix.
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To obtain the insu�ciently sequenced Hi-C samples, we down-sample the sequenc-

ing reads to 1/16 and construct another interaction matrix at the same resolution

,which consequently contains more noises and more blurred patterns. We then fit

the ConvNet model using values at each position in the high-resolution matrix as the

response variable and using its neighboring points from the down-sampled matrix as

the predictors (Fig. 3.1). Our goal is to investigate whether the ConvNet framework

can accurately predict values in the high-resolution matrix using values from the low-

resolution matrix. Noticeably, although technically both matrices are at the same

resolution, we consider the down-sampled interaction matrix “low-resolution”, as in

practice, it is usually processed at lower resolution due to the shallower sequencing

depths. In this paper, we use“low resolution” and “insu�ciently sequenced” inter-

changeably.

Figure 3.2: The topology of the convolutional neural network in HiCPlus HiCPlus
contains three convolutional layers, and the output of the third convolutional layer
is the output of overall neural network. The hyper-parameters listed here are used
throughout this work unless otherwise noted.

Detail Method

1. Pre-processing Hi-C matrix: Many of the current available Hi-C data, espe-

cially in human tissue, are only available at 40kb resolution matrices. For these
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data sets, we start from the BAM file and generate the10Kb resolution inter-

action matrices. Consequently, we observe an increased noise-to-signal ratio

comparing with deeply sequenced Hi-C library. In the training stage, we start

from high-resolution Hi-C data (such as GM12878 from https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525) and use a random down-

sampling method to simulate the low-resolution Hi-C matrix. After this step,

all input matrices are at 10Kb resolution. As previously mentioned, we consider

the matrices generated from down-sampled sequencing reads as low-resolution

since they would have been processed at a lower-resolution at that sequencing

depths in practice. .

2. Divide a Hi-C matrix into multiple square-like sub-regions with fixed size, and

each sub-region is treated as one sample. Unless otherwise noticed, each sub-

region is 0.4Mb ◊ 0.4Mb which contains 40 ◊ 40 = 1, 600 pixels at 10Kb resolu-

tion. We only investigate and predict chromatin interactions where the genomic

distance between two loci is less than 2Mb, as the average size of TADs is less

than 1Mb and there are few meaningful interactions outside TADs.

3. The deep ConvNet is trained to learn the relationship between the low-resolution

samples (a.k.a same size but insu�cient sequenced samples) and high-resolution

samples in the training stage, and predicts the high-resolution samples from

low-resolution samples in the production stage.

4. The predicted high-resolution sub-matrices are merged into chromosome size Hi-

C interaction matrix. As the samples have a surrounding padding region that

is removed during the prediction by ConvNet, the proper overlap is necessary

when dividing the Hi-C interaction matrix to the samples in the Step 1
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Structure of the convolutional neural network

For the ConvNet, the input is a list of low-resolution samples with N ◊N size for each

sample. To avoid the border e�ect, similar with Dong’s work(Dong et al. 2016), we

didn’t add white padding to any convolutional layer so the output of each sample has

the smaller size. Therefore, the output is a list of predicted high-resolution samples

with (N ≠ padding) ◊ (N ≠ padding) size, where N = 40 and padding = 12 for the

typical setting in this discussion, and both input 40 ◊ 40 matrix and output 28 ◊ 28

matrix are registered in the same central location. The shrunk size can be o�set by

the overlapping during the dividing process. We denote the ConvNet model as F ,

the low-resolution input as X, the predicted high-resolution output as Y , and the

real high-resolution Hi-C as Y (Y is also regarded as ground truth in this section).

Mean Square Error (MSE) is used as loss function (Eq. 3.1) in the training process.

Therefore, the goal of the training process is to generate F that minimizes the MSE.

argmin
1
m

mÿ

i=1

(F (X
i

) ≠ Y )2 (3.1)

As shown in Fig 3.3, the ConvNet in HiCPlus has three layers, serving for extract-

ing and representing patterns on the low-resolution matrix, non-linearly mapping the

patterns on the low-resolution matrix to high-resolution matrix, and combining the

high-resolution patterns to generate the predicted matrix, respectively. Below we

describe each layer in detail.

Pattern extraction and representation In this stage, input is the low-resolution

f
1

◊ f
1

matrix, and output is generated by the following Eq. 3.2

F
1

(X) = max(0, w
1

ú X + b
1

) (3.2)

where ú denotes the convolutional operation, X is the input matrix, b
1

is the bias,

and w
1

is an n
1

◊ f
1

◊ f
1

matrix. Here n
1

and f
1

are the filter numbers and filter

size, respectively. Both n
1

and f
1

are hyper-parameters in the ConvNet, and we set
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Figure 3.3: Conceptual view of the network structure in HiCPlus: regional interaction
features (e.g. loops, domain borders) are learned using values at each position in the
high-resolution matrix as the response variable and using its neighboring points from
the low-resolution matrix as the predictors.

n
1

to 16 and f
1

to 5. As shown in (Fig. 3.2c), HiCPlus is not sensitive to these

hyper-parameters. The Rectified Linear Unit (ReLU)(Nair and G. E. Hinton 2010)

is utilized as the non-linear activation function.

Non-linear mapping between the patterns on high-resolution and low-

resolution maps This stage is shown as the middle part of the Fig. 1(b), where

the patterns on the low-resolution matrix are mapped non-linearly with the patterns

on high-resolution matrix using the formula:

F
2

(X) = max(0, w
2

ú F
1

(X) + b
2

) (3.3)

where F
1

(X) is the output from the previous layer, b
2

is the bias, and w
2

are n
2

matrices, each has the size of f
2

◊ f
2

. In this layer, we set n
2

to 16 and f
2

to 1 as it

is a process of non-linear mapping.
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Combining the high-resolution patterns to generate the predicted high-

resolution maps We employ the following formula to generate the predicted high-

resolution Hi-C matrix from the results of the second layer

F
3

(X) = max(0, w
3

ú F
2

(X) + b
3

) (3.4)

where F
2

(X) is the output from the previous layer, b
3

is the bias, and w
3

are

n
3

matrices of size f
3

◊ f
3

. In this step, the non-linear activation function is not

required, and the filter number n
3

is set to 1 to generate the predicted results. Overall,

function F has parameters = w
1

, w
2

, w
3

, b
1

, b
2

, b
3

. The goal of the training process is

to obtain the optimal to minimize MSE on the samples in the training set. We employ

the standard backpropagation(LeCun et al. 1998) with gradient descent to train the

network, and use Stochastic Gradient Descent (SGD) as the update strategy. The

initial parameters are drawn from the uniform distribution with Glorot?s strategy

unless otherwise noted. The training is converged and no over-fitting is observed

(Fig. 3.4).

3.3 Results

We describe the conceptual view of the ConvNet in Fig. 3.3, which learns the mapping

relationship between high-resolution Hi-C matrix and low-resolution Hi-C matrix

at feature levels. Once the model is trained, we can apply it to enhance any Hi-

C interaction matrix with low-sequencing depth. HiCPlus divides the entire Hi-C

matrix into small square samples and enhance them separately. After each block of

interactions are predicted, those blocks are merged into chromosome-wide interaction

matrix Fig. 3.5.
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Figure 3.4: Estimation of overfitting in HiCPlus model Estimation of overfitting in
HiCPlus model. To study the possible over-fitting issue in our model, we calculate
the losses, which are measured in Mean Squared Error (MSE), during the training
process on the training sets (chromosome 1-8) and validation sets (chromosome 19-
22) in GM12878 cell line. We observe that the loss in training and training keep the
same trend in the entire training process.

Figure 3.5: HiCPlus divides the entire Hi-C matrix into small square samples and
enhance them separately. After each block of interactions are predicted, those blocks
are merged into chromosome-wide interaction matrix.
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3.3.1 Chromatin interactions are predictable from their neighboring

regions

The hypothesis in the design of our network topology is that the Hi-C matrix contains

repeating local patterns, and the interaction intensity of each point is not indepen-

dent to its local neighboring regions. Base on the hypothesis, we should be able to

predict the interaction frequency of any cell in the Hi-C matrix with the interaction

frequencies from its neighbouring regions. To test this hypothesis, we trained a Con-

vNet model on chromosomes 1-17 and systematically predicted interaction matrices

in chromosomes 18-22, using the 10kb resolution Hi-C data in GM12878 cells (Rao

et al. 2014). To evaluate the performance of our ConvNet model, we computed both

the Pearson and Spearman correlation coe�cients between the predicted values and

the real values at each genomic distance.

An important parameter in our model is the size of neighboring regions: intu-

itively, to predict the value of one point, using a larger surrounding matrix will yield

better results. Therefore, we tested a range of neighboring matrix sizes, from 3◊3 to

13◊13 Indeed, we observed that using a larger neighboring matrix generally increases

the prediction accuracy. When using a 13◊13 surrounding matrix, the Pearson corre-

lations between the predicted and real interaction frequencies are consistently higher

than the predictions using smaller surrounding matrices, at each genomic distance.

For example, the Pearson correlation at 40 kb genomic distance for 13◊13, 7◊7 and

3◊3 matrices are 0.93, 0.92, and 0.89 respectively (Fig. 3.6). We tried another simple

approach, by predicting each interaction frequency using the average values from its

surrounding matrix. To investigate the optimal region employed for averaging, we

average nearby 3 ◊ 3, 5 ◊ 5, 7 ◊ 7 and 9 ◊ 9 regions, and the averaging 3 ◊ 3 could

obtain the best performance (Fig. 3.7). Then, we compare the ConvNet enhanced

matrix with the optimal simple averaging approach, and ConvNet performs much

better than this simple approach (Fig. 3.6). In addition, we found that the prediction
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accuracy reached a plateau when we used the 13 ◊ 13 matrix prediction model, and

further increasing the size of surrounding matrix shows little if any improvement of

the prediction accuracy (Fig. 3.8). Also, we test several other potential approaches,

including 2D Gaussian smoothing, Random Forest Repressor, Support Vector Re-

pressor as shown in Fig. 3.7, and confirm the ConvNet is the optimal for prediction

of the Hi-C pixel.

Figure 3.6: Predicting chromatin interactions from their neighboring regions We
trained a ConNet model on chromosome 1-17 and systematically predicted interaction
matrices in chromosome 18-22, using the 10kb resolution Hi-C data in GM12878 cell
line. We used three surrounding regions sizes (3 ◊ 3 , 7 ◊ 7, 13 ◊ 13) for prediction,
and also compared their performances with a naive prediction method that simply
averages the neighboring 3 ◊ 3 matrix. We observe that using 13 ◊ 13 matrix achieve
the best performance at each genomic distance when evaluated by both Pearson and
Spearman correlations.

Finally, we compared the performance of training one model for the whole matrix

with training a model for each genomic distance. As it is known that there is distance

decay in the Hi-C interaction matrix, which means that the further away a bins is

from the diagonal of the matrix, the smaller value it tends to be. We wanted to

investigate whether the distance e�ect has been captured in the convolutional network

and whether it could a�ect the final output. Therefore, we trained another set of

models, with each model corresponding to chromatin interactions at each distance

(10kb, 20kb, and so on). We didn’t observe improved performance by training models
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Figure 3.7: Testing the e�ect of using di�erent approaches to predict chromatin in-
teraction using neighboring regions. This figure is similar to Fig. 3.6, but we evaluate
more approaches. In the upper part, to find the optimal range of averaging oper-
ation, we study di�erent range of averaging, and the averaging 3 ◊ 3 obtains best
result so in Fig. 3.6, the we plot averaging 3 ◊ 3 as one of the baselines. In the lower
part, we add Random Forest and 2D Gaussian Smoothing to the comparison, and
convolutional neural network obtains best result, inspiring us to implement HiCPlus
using convolutional neural network. We also implemented Support Vector Repressor
but the result is far below the curves on current plot. All of the evaluations are done
in chromosome 18-22, using the 10kb resolution Hi-C data in GM12878 cells. If the
model need training (e.g. Random Forest and Convolutional Neural Network), the
training sets are from chromosome 1-17.
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Figure 3.8: Testing the e�ect of using di�erent sizes of neighboring regions to predict
chromatin interaction This figure is similar to Fig. 2, but with more choices of
surrounding regions for both HiCPlus and prediction by averaging nearby points.
The ConvNet model is trained on chromosome 1-17 and the prediction is done in
chromosome 18-22, using the 10kb resolution Hi-C data in GM12878 cells.

at di�erent distances(Fig. 3.8), indicating that our current model has incorporated

the distance e�ect and it is not necessary to train di�erent models at di�erent genomic

distances. Therefore, we decided to train a single model for the whole Hi-C interaction

matrix rather than training di�erent models at di�erent genomic.

3.3.2 Enhancing chromatin interaction matrix with low-sequence depth

Having established that values in Hi-C matrix can be predicted using their surround-

ing regions, we then investigated whether we can predict these values with insu�-

ciently sequenced samples. For this purpose, we first built and tested our HiCPlus

model in the same cell type, using the high resolution Hi-C data in GM12878 cell

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525) (Rao et al.

2014). We first constructed the 10 kb resolution matrix using all the reads (Fig. 3.9a,

right panel). Then we down-sampled the reads to 1/16 of the original sequencing

depth and construct the interaction matrix at the same resolution (Fig. 3.9a, left

panel). The newly generated matrix contains lots of noise and TAD structures are

less clear. Next, we fit a ConvNet model, using values at each bin on the high-quality
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Figure 3.9: HiCPlus accurately enhances interaction matrix with low-sequence depth
We trained model on chromosome 1-7 and tested the prediction in chromosome 18, in
the same cell type (GM12878) at 10kb resolution. For prediction, we random chose
1/16 reads from the original total reads, built an interaction matrix (a, left panel),
and then used HiCPlus to enhance it (a, mid panel). a, HiCPlus enhanced HiC and
real high-resolution Hi-C matrices are highly similar. b, High correlations between
HiCPlus enhanced HiC and real high-resolution Hi-C matrices each genomic distance,
and they are close to the correlations between two biological replicates (dotted line).
Their correlations with down-sampled Hi-C matrix is much lower (solid blue line).
(c) Distribution of the Hi-C interaction frequencies at each distance for real Hi-C and
HiCPlus enhanced matrices are similar.

matrix as response variable and using its neighbouring 13 ◊ 13 points in the down-

sampled matrix as predictors. Once the model is trained, we applied it to enhance

the down-sampled interaction matrix in chromosome 18. An example of ConvNet

enhanced matrix is shown in Fig. 3.9a (middle panel). We observed that the HiCPlus

enhanced matrix is highly similar with the real high-resolution Hi-C matrix. Compar-

ing with the matrix generated from down-sampled reads, it contains much less noise

and both the individual chromatin loops and the TAD structures are more visible.

To quantitatively evaluate the performance of HiCPlus, we computed the Pear-

son correlation and Spearman ranking correlation between the experimental high-
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Figure 3.10: HiCPlus can generate high quality interaction matrix using a fraction
of the original sequencing depth. Figures on the left column describe the correla-
tions between down-sampled interaction matrices vs. the original high-resolution
matrix. Figures on the right column describe the correlations between HiCPlus en-
hanced interaction matrices vs. the original high-resolution matrix. Compared with
down-sampled matrix, HiCPlus significantly increased their correlation to the original
deep sequenced data. We plot Pearson correlation coe�cients in the top panels and
Spearman correlation coe�cients in the bottom panels.
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Figure 3.11: The performance of HiCPlus is stable on di�erent chromosomes This
figure shows the performance of the same model, which is trained on chromosomes
1-8, on all 22 chromosomes. The Pearson correlations on all chromosomes have nearly
the same improvement comparing with the raw input sample.

Figure 3.12: The performance of HiCPlus is stable on di�erent chromosomes based on
Spearman correlation This figure is the continue of Fig. 3.11, and Spearman ranking
correlation is employed as the metrics in this figure.
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resolution matrix, down-sampled matrix, and HiCPlus enhanced matrix at each ge-

nomic distance. As shown in Fig. 3.9b, HiCPlus enhanced matrix obtained much

higher correlation with the real high-resolution Hi-C matrix than the down-sampled

matrix at all genomic distances. Surprisingly, the correlations between the HiCPlus

enhanced matrix and the real high-resolution Hi-C matrix are as nearly high as those

between two real high-resolution matrices from two biological replicates in the same

cell type (Fig. 3.9b, Fig. 3.10), suggesting that ConvNet framework can reconstruct a

high-resolution interaction matrix using only a fraction of the total sequencing reads.

To illustrate the performance of the model is consistent across di�erent chromosomes,

we test the performance of the same model, which is trained on chromosomes 1-8,

on every chromosomes (as shown in Fig. 3.11 and Fig. 3.12). We didn’t notice any

di�erence in the improvements between the raw input and enhanced Hi-C.

Figure 3.13: The performance of HiCPlus implemented by image denoising approach
This figure is similar to Fig. 3 and we test several image-denoising approach. As
shown the figure, all of the denoising approaches have some kind of the enhancement
e�ect of Hi-C matrix but not as good as HiCPlus. Among the denoising approach,
2D Gaussian smoothing achieves much better result comparing with 2D averaging
smoothing and Anisotropic di�usion. Therefore, in the following discussion, we are
using the 2D Gaussian as representative of the image denoising approach for the
baseline comparison.

To compare deep convolutional neural network with other potential approaches,

we also implemented denoising-based method, including 2D Gaussian Smoothing, 2D
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Figure 3.14: The performance of HiCPlus implemented by di�erent models. This
figure is similar to Fig. 3 and we present the performance of di�erent approaches. As
shown the figure, current version of HiCPlus implemented by convolutional neural
network achieve the best performance. We also try the Supported Vector Regres-
sor(SVR) but the performance is poor so we didn’t plot in this figure.

average smoothing and anisotropic di�usion (Fig. 3.13) as well as other learning-based

models (e.g. Random Forest Repressor(RFR) and Support Vector Repressor(SVR))

as shown in Fig. 3.14. The selection of parameters of 2D Gaussian Smoothing is

shown in Fig. 3.15, and the parameters for 2D Average smoothing is obtained from

Yang’s work (T. Yang et al. 2017). We used default parameters for RFR and SVR in

Sklearn (Jones, Oliphant, Peterson, et al. 2001–).

We also test the performance of HiCPlus on the normalized Hi-C matrix. It has

been shown that there are systematic biases in Hi-C matrix (Ya�e and Tanay 2011;

Hu et al. 2012), for example GC contents, number of cutter sizes, and mappability in

each bin/region. Only after normalization, Hi-C data can be further analyzed to infer

important features of 3D genome organization, such as determining the chromatin

interactions between enhancers and promoters or identifying topologically associating

domains (TADs). As shown in Fig. 3.16, the HiCPlus can be also employed to

enhanced the normalized Hi-C matrix as long as the training sets are also normalized
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Figure 3.15: Testing the parameter for the 2D Gaussian smoothing This figure is
similar to Fig. 3, and we choose the optimal parameter for the 2D Gaussian Smooth-
ing, which is one of the baselines in this study. To determine the optimal parameter
(the deviation, donating as Sigma ) in the 2D Gaussian smoothing, we run the 2D
Gaussian smoothing with di�erent Sigma values. To quantitatively compare the cor-
relation, we also list the average correlation in the distance 10-100 bins as shown
the in the table. The performance of sigma = 3, 4, and 5 are very similar, and we
pick sigma=4 as the optimal Gaussian kernel parameter for the following study. The
study is performed at chromosome 9.

matrix tested whether HiCPlus works with normalized Hi-C data and the results show

that HiCPlus can also enhance the resolution of normalized Hi-C data (Fig. 3.16).

3.3.3 Enhancing Hi-C interaction matrices across different cell-types

A key application for HiCPlus is to enhance the resolution of existing low-resolution

Hi-C matrices from the previous studies (J. R. Dixon et al. 2012; J. R. Dixon et al.

2015; J. Fraser et al. 2015; Nagano et al. 2015; Jin et al. 2013; Leung et al. 2015;

Seitan et al. 2013; Shen et al. 2012; Tang et al. 2015; Sofueva et al. 2013) with the

model trained on the cell types where high-resolution Hi-C data are available (Rao

et al. 2014; Jin et al. 2013). The results can also be used to address whether the
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Figure 3.16: HiCPlus can also enhance normalized Hi-C interaction matrix HiCPlus
model was trained and tested with ICE normalized Hi-C data in GM12878 cells at
10kb resolution.

low-level local patterns on Hi-C matrix are shared across di�erent cell types as well.

First, we trained the ConvNet model in three di�erent cell types (GM12878, K562,

IMR90) (Rao et al. 2014) with similar sequencing depths and tested their prediction

performances in K562 cells. Similar to the procedure showed in the previous section,

we down-sampled Hi-C reads in K562 to 1/16 and then applied ConvNet to enhance

its interaction matrix. As shown in Fig. 4a, the enhanced Hi-C matrices using three

di�erent training data sets are highly similar to each other. More importantly, all of

them are also similar to the original high-resolution interaction matrix (Fig. 3.17a,

Fig. 3.18), suggesting that the local patterns/features captured by ConvNet frame-

work from di�erent Hi-C matrices are highly similar and can be used to enhancing

Hi-C matrix in other cell types.

To further validate this observation, we trained the ConvNet model in GM12878

cells and applied it to enhance Hi-C matrices in three di�erent cell types (GM12878,

K562, IMR90). Again, we found that the ConvNet enhanced Hi-C matrices are

highly similar to the real high-resolution Hi-C matrices. An example is shown in
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Figure 3.17: HiCPlus can learn model from one cell type and predict in other cell
types Figures are real and HiCPlus enhanced matrices in GM12878, K562 and IMR90
at 10kb resolution. a, HiCPlus enhanced Hi-C matrices in K562 using models trained
in three di�erent cell types are highly similar to each other, and all of them are also
similar to the original K562 interaction matrix. b, Model trained in GM12878 can
be used to predict interaction matrices in di�erent cell types (K562, GM12878 and
IMR90)

Fig. 3.17b, where the chromatin interaction patterns in this region are highly dynamic

across di�erent cell types. However, the ConvNet enhanced matrices accurately depict

these di�erences and help demonstrating these cell-type-specific TADs and chromatin

interactions. Finally, we applied HiCPlus to systematically enhance 22 low-resolution

Hi-C interaction matrices from 20 tissues/cell types generated in past several years

(J. R. Dixon et al. 2012; J. R. Dixon et al. 2015; J. Fraser et al. 2015; Nagano et al.

2015; Jin et al. 2013; Leung et al. 2015; Seitan et al. 2013; Shen et al. 2012; Tang

et al. 2015; Sofueva et al. 2013).

To predict such datasets, in the first step, we trained models for di�erent sequenc-

ing depth from (◊4 to ◊16). Then we generate the 10kb Hi-C interaction matrix from
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Figure 3.18: Quantitatively evaluation of the performance between the models trained
on di�erent cell types High correlations between predicted HiCPlus enhanced ma-
trices using models trained in three di�erent cell types and high resolution Hi-C at
each genomic distance.

the BAM file in Hi-C library. In order to determine the enhancement scale, we cal-

culate the ratio of the e�ective sequencing depth between the candidate Hi-C matrix

and Hi-C training matrix between genomic distance of 25,000 to 1,000,000 base pairs.

If the sequencing depth of candidates’ Hi-C matrices is less than 1/16 of training

Hi-C matrix, we use the ◊16 model.

3.3.4 Identification of meaningful interactions with HiCPlus enhanced

matrices

It has been shown that strong chromatin interactions (loops) are enriched for im-

portant regulatory elements, such as enhancers and promoters (Rao et al. 2014).

After demonstrating that HiCPlus can transform low-resolution Hi-C data to high-

resolution Hi-C interaction matrix, we investigated whether these enhanced high-

resolution matrices can facilitate the identification of meaningful chromatin inter-

actions. For this purpose, we used Fit-Hi-C (Ay, Bailey, and Noble 2014) software,

which can adjust random polymer looping e�ect and estimate statistical confidence of

intra-chromosomal interactions. For the down-sampled Hi-C, there are two possible
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Figure 3.19: Identification of meaningful interactions with HiCPlus enhanced ma-
trices a, Enrichment of potential functional element in predicted interacting re-
gions, from down-sampled Hi-C, HiCPlus enhanced and real high-resolution Hi-C
matrices in K562 cell line at 10kb resolution. The functional annotations are from
chromHMM. The interaction regions are identified with Fit-Hi-C (cuto� of q-value
< 1e-06). ChromHMM states enrichment in those regions were shown as log2(fold-
change) against interactions in whole-genome. b, ROC analysis of interactions from
CTCF ChIA-PET with identified interacting peaks from down-sampled Hi-C, HiC-
Plus enhanced and real high-resolution Hi-C matrices in K562 cell line. c On the left
axis, we plot the percentage of CTCF ChIP-PET identified chromatin interactions
that are also detected by Fit-Hi-C from Hi-C matrices. On the right axis, it is the
total number of interactions called by Fit-Hi-C for di�erent Hi-C matrices
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Figure 3.20: HiCPlus enhanced matrix captures significant interactions between MYC
promoter and cis-regulatory elements that are missed or unresolved by low-resolution
Hi-C matrix The top two virtual 4C tracks are generated using HiCPlus enhanced
matrix (10kb resolution) and the original matrix (40Kb resolution) from Aorta tissue,
anchored on MYC promoter (marked by *). We compared virtual 4C tracks with
Capture Hi-C data surrounding MYC promoter, supported by at least 20 reads in
GM12878 cells. Red dots indicate the Capture Hi-C peaks that are also detected by
Hi-C. We notice that multiple Capture Hi-C interactions are mapped to the same
40kb bin and thus unresolvable by the low-resolution Hi-C matrix (yellow dots in the
low-resolution virtual 4C). However, these interactions are captured by the HiCPlus
enhanced matrix. We also notice that these interactions are between MYC promoter
and potential distal enhancers, marked by H3K4me1 and H3K27ac.
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way to run Fit-Hi-C: 1) run on low interaction numbers; 2) multiple the downsampled

ratio to make the overall interaction intensities similar to the original high-resolution

matrix. We run both of the methods and for method one, nearly no significant in-

teractions are called because the value is too low. Therefore, unless otherwise noted,

we run Fit-Hi-C based on the second method.

We applied Fit-Hi-C to the real high-resolution, 1/16 down-sampled, and HiC-

Plus enhanced interaction matrices at 10kb resolution in K562 cell line, respectively.

We kept the predicted significant interactions (q-value < 1e-06 as suggested in the

manual) in genomic distance from 30Kb to 500Kb for further comparative analysis.

Then we investigated whether the predicted chromatin interactions from three matri-

ces are enriched for potential functional elements annotated by ChromHMM (Ernst

and Kellis 2012).

As shown in Fig. 3.19a, significant interactions from the real high-resolution Hi-

C matrix and HiCPlus enhanced matrix show similar patterns: enriched for active

states, such as enhancer-associated states (Weak Enhancer, Active Enhancer 1&2,

Bivalent Enhancer and Genic enhancer1&2) and promoter-associated states (Flank-

ing TSS Upstream, Flanking TSS Downstream and Active TSS ), while depleted

of inactive states, such as quiescent and heterochromatin-associated states ( Quies-

cent/Low and Heterochromatin). On the contrary, the interactions identified in the

down-sampled Hi-C matrix show discrepant patterns with those identified in real

high-resolution Hi-C matrix. For example, they are enriched for heterochromatin

and minimal if any enrichment of active TSS, suggesting that interactions identified

from the down-sampled matrix are of poor quality and might give false information

if analysed at this resolution.

Next, we compared the predicted chromatin interactions from the real high-

resolution Hi-C, down-sampled Hi-C, and HiCPlus enhanced matrices, with the iden-

tified chromatin loops by CTCF ChIA-PET in the same cell type. We used the
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identified CTCF mediated chromatin loops from ChIA-PET as true positives. As for

negatives, we randomly selected the same number of pairs of CTCF binding sites that

are not predicted as interacting pairs by ChIA-PET (methods). Then we plotted the

AUC (Area Under the Curve) to evaluate the performance of our model.

As shown in Fig. 3.19b, CTCF interacting pairs and non-interacting pairs are sep-

arated in the predicted results from HiCPlus enhanced matrix (average AUC = 0.85).

We also observed that the AUC score for HiCPlus enhanced matrix is significantly

higher than the AUC from down-sampled matrix (p-value < 0.05). Finally, we com-

pared the overlap between significant interactions identified in all three interaction

matrices with the ChIA-PET identified interactions (Fig. 3.19c). We use 5% false

discovery rate (FDR) cuto� of Fit-Hi-C to call the significant interactions from Hi-C

matrices, and we define the coverage as the percentage of interactions dtect by ChIP-

PET which are also significant interactions in Hi-C. Although the low-sequenced Hi-C

has slightly higher coverage but the total number of the significant interactions is too

large, indicating high rage of false positive. HiCPlus and smoothing results have

similar number of the significant interactions, and HiCPlus has higher coverage .

To further show the power of HiCPlus framework, we applied it to enhance the Hi-

C data set from Aorta tissue where only low-resolution (40kb) matrices are available

(Fig. 3.20). By comparing chromatin interactions from Capture Hi-C, we observe that

HiCPlus enhanced matrix captures significant interactions between MYC promoter

and cis-regulatory elements that are missed or unresolved by low-resolution Hi-C

matrix. For example, multiple Capture Hi-C interactions are mapped to the same

40kb bin and thus unresolvable by the low-resolution Hi-C matrix (yellow dots on the

second 4C track). However, these interactions are captured by the enhanced matrix,

suggesting that HiCPlus can improve the resolution of Hi-C interaction matrix and

reveal meaningful interactions that are missed by original low-resolution Hi-C data.

In summary, the ConvNet framework can significantly improve the quality of in-
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teraction matrix for insu�ciently sequenced Hi-C samples and further facilitate iden-

tifying biologically meaningful interactions that are enriched for potential functional

elements and validated by other techniques.

3.4 Discussion

Here we present HiCPlus, the first computational approach to infer high-resolution

Hi-C interaction matrices from low-resolution Hi-C data. Our framework can con-

struct the interaction matrix with similar quality, but using only 1/16 or even fewer

sequencing reads. We systematically applied HiCPlus to generate high-resolution

matrix for 22 tissue/cell types where only low resolution Hi-C data are available,

covering a large variety of human tissues.

We observe that Hi-C interaction matrices are composed of a series of low-level

repeating local patterns, which are shared across all cell types and tissues. These

features can be e�ectively captured by our ConvNet framework and used to enhance

Hi-C matrix in di�erent cell types.

It is interesting to further study the patterns utilized by the model to enhance

the Hi-C matrix. Considering that the simple Gaussian smoothing could also achieve

the pretty large increase in the Hi-C quality (Fig. 3.13) and 2D Gaussian smooth

can also be regarded as the convolutional operation, we believe filtering out the noise

by the smoothing should a significant way to remove the false positive interactions.

The pattern utilized by the smoothing can be described as the point should be similar

to its nearby points, and if a strong interaction point is isolated in low interaction

regions, it is more likely to be a noise signal.

In Fig. 3.21, we compare the overlap significant interactions called by the Fit-Hi-C

between di�erent version Hi-C with experimental high-resolution Hi-C. As expected,

when the sequencing depth is low, the noise level is very high, and a large number

of false positives are observed. Both Gaussian smoothing and HiCPlus can filter out
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Figure 3.21: Overlap on the Fit-Hi-C significant interactions with experimental high
resolution Hi-C We use the Fit-Hi-C to call the significant interactions on raw in-
put, smoothed and HiCPlus enhanced Hi-C matrix and count the overlap with the
experimental high-resolution Hi-C. We use p-value of 10e-6 for the threshold as sug-
gested by Fit-Hi-C. The raw version of downsamples input Hi-C cannot detect any
significant interactions so we multiple the down sample rate (16) to make all Hi-C
matrix have the similar overall intensity. The number of significant interaction in the
input Hi-C is more than 3 times as the high-resolution Hi-C, which is regarded as the
ground truth, indicating the high noise level in the insu�cient-sequenced Hi-C. The
Hi-C matrix with Gaussian smoothing has much less significant interaction. Com-
paring with Gaussian smoothing, the HiCPlus, have similar number of significant
interactions and better performance in both accuracy and coverage. We believe the
multi-layer non-linear filtering in convolutional neural network to distinguish noise
and real signals.
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Figure 3.22: The HiCPlus outperform simple 2D smoothing at important regions
Besides the the analysis on the entire genome, we also investigate the performance on
the loop peak, which is one of key patterns of Hi-C interaction heatmap. We plot the
Hi-C heatmap with high contrast on the left. The Gaussian smoothing works good for
noise reduction, however, it also reduce too much signal on the loop peak(as shown in
the white circle). On the HiCPlus, the noise is also removed and the strong interaction
peak is also conserved as well. We believe that smoothing is an important operation
of convolutional neural network in HiCPlus to remove excess noise. Comparing with
simple smoothing, the multiple steps of non-linearity filters in the HiCPlus enable
HiCPlus to learn more complicated features from the train data sets. For example,
in the loop peaks here, from the biological knowledge, we can describe as at the top
of the Topological Association Domains(TADs), the strong interacted bins are more
likely to be a true signal of the loop peak rather than random noise. The simple
smoothing is unable to distinguish loop peaks and noise.

noise, and HiCPlus outperform the 2D Gaussian smoothing in both accuracy and

coverage, indicating the HiCPlus can capture more complicated features comparing

with simple smoothing.

We further compare the performance between Gaussian smoothing and HiCPlus

on loop region, which is one of the most important discoveries in Hi-C (Rao et al.

2014) , and the result is shown in Fig. 3.22. Loop peaks are strong interaction peak

comparing with the background, and the results show the Gaussian smoothing reduce

the signal too much while HiCPlus more e�ciently distinguish such loop peaks with

noise. However, most of these local patterns are still represented as black boxes
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in the intermediate convolutional layers and therefore are not human interpretable.

We hypothesize that these features are related to important functions in 3D genome

organization, such as chromatin loops and TADs. More work on visualizing and

interpreting these features are imperative and will be of great values to deepen our

understanding of the high-order genome organization and gene regulation.

Figure 3.23: We observe that HiCPlus enhanced matrix is also highly similar to the
interaction matrix from other biological replicate in the same cell type (GM12878).

Another caveat is the ground truth used for training and evaluating in the Con-

vNet framework. Throughout the analyses in this work, we used the real high-

resolution Hi-C matrix as the ground truth/gold standard. However, there are natural

variations even between high-resolution interaction matrices from di�erent biological

replicates in the same cell type. Intriguingly, we found that in some cases, the Con-
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vNet enhanced matrix is more correlated with the other biological replicate than with

the replicate where it is trained (Fig. 3.23). Further, in the functional enrichment

analysis (Fig. 3.19a), the significant interactions in the ConvNet enhanced matrix

are highly enriched for most of the epigenetic markers than those from the real high-

resolution Hi-C matrix. In addition, previous work from other disciplines (Good-

fellow, Bengio, and Courville 2016; Srivastava et al. 2014; Sukhbaatar and Fergus

2014) have reported that introducing noises in the training process can increase the

prediction accuracy of the deep learning model. It is possible that the deep ConvNet

model can distinguish noises and real signals in the Hi-C matrices, which contributes

to the interaction matrix enhancement. Further investigations are needed to validate

and interpret these interesting observations and the results might shed light on how

to improve the computational model and deepen our understanding of chromatin

interactions. We want to point out that sequencing depth has great impact on the

performance of HiCPlus. In this work, to make enhanced matrices for the 20 human

tissue Hi-C data(22 replicates), we trained three di�erent models according to their

available sequencing depth: > 80 million, 50-80 million, < 50 millions (more detailed

breakdown in Table. 3.1. To achieve the best result, an individual user is recom-

mended to retrain the model according to the sequencing depth. The user can simply

down-sample the Hi-C reads in GM12878 or IMR90 to match their read numbers and

run our pipeline to train their model.

In summary, HiCPlus presents the first deep learning framework for enhancing the

resolution of Hi-C interaction matrices. By leveraging interaction frequencies from

neighbouring regions and learning regional patterns from available high-resolution Hi-

C data, HiCPlus can generate high-resolution Hi-C interaction matrices at a fraction

of the original sequencing reads. With the fast accumulation of Hi-C data in di�erent

cell lines and tissue types, we provide a rich resource and a powerful tool for the study

of 3D genome organization and gene regulation.
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Table 3.1: Di�erence in the change of the distances D caused by di�erent occlusions
as shown

Dataset Tissue/Cell
type

Reads
in re-
gion

Enhance
Ratio Model total reads

Muscle_Psoas(PO3) Psoas 2.0 71.0 16 9.3
Spleen(SX3) Spleen 2.7 51.7 16 19.3

Pancreas(PA3) Pancreas 2.9 49.3 16 11.6
Lung(LG2) Lung 3.6 39.9 16 20.3
Lung(LG1) Lung 3.7 38.6 16 13.3

Muscle_Psoas(PO1) Psoas 5.1 28.0 16 20.0
Ovary Ovary 5.4 26.1 16 27.7

Bowel_small Small Bowel 5.7 24.8 16 25.9
Pancreas(PA2) Pancreas 7.4 19.2 16 27.4
AdrenalGland Adrenal 8.4 16.9 16 28.8
Spleen(SX1) Spleen 8.5 16.6 16 48.1

Bladder Bladder 9.3 15.3 16 39.6

cortex_DLPFC
Dorsolateral
Prefrontal
Cortex

9.9 14.4 16 33.4

Hippocampus Hippocampus 10.6 13.4 16 38.0

H1-NPC(rep1) Neural Pro-
genitor Cell 14.8 9.6 9 50.3

VentricleRight Right Ventri-
cle 18.7 7.6 9 60.4

H1-NPC(rep2) Neural Pro-
genitor Cell 19.2 7.4 9 70.6

Aorta_STL002 Aorta 30.2 4.7 4 101.6

H1-TRO(rep1) Trophoblast-
like Cell 35.2 4.0 4 88.7

H1-TRO(rep2) Trophoblast-
like Cell 42.9 3.3 4 105.7

Liver_STL011 Liver 49.9 2.8 4 161.1
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Chapter 4

Training the Denoising Network without Clean

Datasets and Its Application to Hi-C

4.1 Introduction

Denoising (a.k.a noise reduction) is a process to reduce the noise from raw data.

Experimental data is usually the mixture of signal and noise, thus reducing noise

from experimental data is required (Kantz et al. 1993) to enhance data quality. In a

broader view, a dataset is a corrupted version of the clean signal, where ’corruption’

is the addition of noise. As a result, the denoising can also be regarded as a process

to restore the clean version of signals from the corresponding corrupted noisy version.

4.1.1 Learning-based methods to reconstruct corrupted data

The learning-based approach does not require prior knowledge about the mechanism

of the corruption process (e.g. the distribution of the noise). Instead, it learns

strategies to reverse the corruption automatically from corrupted/uncorrupted data

pairs.

The general procedure of learning-based data restoration includes:

1. Obtain the corrupted and uncorrupted version of data X̃ and X, respectively.

2. If the corrupted version X̃ doesn’t exist naturally, simulate the corruption pro-

cess C(X|X̃) to generate the corrupted data sets X̃.
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3. Learn the model F , which reflects the generalized mapping relationship between

the uncorrupted X and corrupted X̃. The aim of the training process is to

minimize the dissimilarity L(X, F (X̃)).

4. Apply the model to data sets where uncorrupted version is unavailable, to

reconstruct the corresponding uncorrupted version F (X).

In recent years, with the development of the deep neural network (LeCun, Bengio, and

G. Hinton 2015; Goodfellow, Bengio, and Courville 2016; Schmidhuber 2015), most

learning-based data reconstruction approaches employ multi-layer neural networks as

the model to reconstruct the uncorrupted data from the corrupted version in multiple

fields, including image (Dong et al. 2016; Burger, Schuler, and Harmeling 2012; Eigen,

Krishnan, and Fergus 2013), audio (Maas et al. 2012), and experimental data (Koh,

Pierson, and Kundaje 2017; Y. Zhang et al. 2017).

4.1.2 Experimental data enhancement

Several advances have made in using the deep neural network to enhance the experi-

mental data, mostly in the field of computational biology (Koh, Pierson, and Kundaje

2017; Y. Zhang et al. 2017). In this area, high-quality data is only available in very

limited types of samples due to the cost, while low-quality data is much easier to ob-

tain. These approaches employ a similar basic procedure as discussed above, where

low-quality data sets are regarded as the corrupted version, and high-quality data sets

are approximately considered as the golden standard. The model is trained with high-

quality and low-quality data pairs and applied to the samples where only low-quality

data sets are available. The limitation of these methods is that the high-quality data

is still not perfectly clean, limiting the quality of the enhanced data.
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4.1.3 Our Contribution

All of the approaches above need the clean data in some samples to train the denoising

model in a supervised manner; then the model can be applied to those samples where

the ground truth is unavailable. However, because of the limitation of experiments, it

is nearly impossible to obtain noise-free data in most domains to train the denoising

network. Conventionally, to obtain a higher quality of experimental data, a standard

approach is to run parallel experiments under identical condition multiple times to

generate several copies (replicates) of the data. The final result is thus the average of

all the parallel experimental results, which may be better than any of the individual

data, although this approach requires more resources.

Figure 4.1: The application scenarios in our denoising network. X is the clean data,
and X̃ is an observation (experimental data) from the ground truth X. The process
to obtain the X̃ from X can be regarded as a corruption process which is presented as
C(X|X̃). On the left, we plot the traditional scenarios of the reconstruction, where
the uncorrupted data are available on the part of the data sets. On the right, it is the
scenarios discussed in this work, where none of the uncorrupted data sets is available.

In this paper, we propose a framework to train the model for reducing noise in

experimental data without uncorrupted data. The training of the model utilizes the

data sets from two (or more) parallel experiments under identical conditions. In

Fig. 4.1, the left part represents application scenario of previous denoising networks
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as discussed above. In those work, the uncorrupted data(e.g. clean image) is at

least partially available and can be used as training data. In the right part of Fig.

4.1, we illustrate the scenario of our work when the uncorrupted ground truth is not

available, which reflects most cases in experimental science.

Basic idea of our approach In experimental science, the observed experimental

data X̃ = X + ‘, where X is the true signal and ‘ is the noise. The signal X is stable

and consistent across all parallel experiments, while the noise ‘ is volatile and will

change across parallel experiments. Our approach takes advantage of these properties

to train denoising network to distinguish between the true signal X and the noise ‘.

4.1.4 Hi-C experiments

Hi-C (Lieberman-Aiden et al. 2009) is a technique to detect the 3D structure of

genomes; the output of a Hi-C experiment is a 2D heatmap(Fig. 4.6a) which provides

the interaction intensity between all loci on the genome. This heatmap provides

important information about the 3D proximation between the loci, in particular for

those who are far away along the DNA string, and such loci usually contain important

functional units of the genome (Rao et al. 2014).

In the Hi-C experiment, a chemical reagent is added to crosslink the DNA string,

and the loci closing to each other have the higher probability to be crosslinked. Then,

the long DNA string is digested into small pieces to sequence. The value of each pixel

of a Hi-C heatmap is the number of small DNA sequencing (a.k.a DNA reads) whose

two ends binding two di�erent loci by the cross-linking operation, and reflects the

probability of crosslinking between two loci. Therefore, to enhance the signal-to-

noise ratio of Hi-C, more short DNA sequencing reads are needed. However, since

the cost of sequencing is high, the total number of DNA sequencing reads cannot

increase infinitely. Even in the best Hi-C datasets obtained so far (Rao et al. 2014),

two identical biological replicates cannot match each other exactly, indicating the
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existence of noise in Hi-C data, making it precious to reduce the noise level in Hi-C

data.

4.2 Model Description

4.2.1 Siamese Network

Siamese network is a class of network structure, in which two or more identical sub-

structures share the same set of parameters (Bromley et al. 1994). Siamese network

has achieved great success in a series of verification and identification problems in-

cluding signature (Bromley et al. 1994), face (Chopra, Hadsell, and LeCun 2005;

Khalil-Hani and Sung 2014; L. Zheng et al. 2016; Bianco 2017), gait (C. Zhang et al.

2016) and voice (Sandouk and K. Chen 2016; Kamper, W. Wang, and Livescu 2016).

The key of Siamese network is to process the raw form of comparable sample

pairs (X
1

, X
2

) by multi-layer neural networks F (X, �) with shared topology and

parameters �, and generate the representation of the sample pairs (Z
1

, Z
2

), where

Z
1

= F (X
1

, �), Z
2

= F (X
2

, �) and � is the shared parameter in the multi-layer

neural network. Then, the similarities D of the sample pairs are evaluated in the

representation form as D(Z
1

, Z
2

).

In these verification problems, the label Y can be defined based on the relationship

of sample pairs (X
1

, X
2

). For instance, in face verification problem, the binary labels

for the image pairs have been defined as 0 if the image pair is from the same person

or 1 if the image pair is from di�erent persons (Chopra, Hadsell, and LeCun 2005).

In the following step, the loss can be calculated based on Eq. 4.1.

L(X
1

, X
2

, Y ) = L(D(Z
1

, Z
2

), Y ) (4.1)

where L is the loss function,and D is the dissimilarity.
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4.2.2 Our model

Here, we present a denoising Siamese network(DSN), which utilizes the Siamese topol-

ogy to train a denoising network F (�). The aim of denoising network F (�) is to

obtain clean data Z from noisy experimental data X̃ (Eq. 4.2 ).

Z = F (X̃, �) (4.2)

where X is the noisy raw data, and Z is the denoised data.

Siamese Network Topology

Figure 4.2: The network topology of our denoising siamese network. X̃
1

and X̃
2

are
two independent experimental observations for the same sample from the identical
experimental procedure. Z

1

and Z
2

are obtained from F (X̃, ◊), which is the con-
volutional neural network with shared parameters ◊. Since Z

1

and Z
2

have shrunk
size after the convolutional operation, X̃

1

and X̃
2

will remove the padding region to
obtain the X̃ Õ

1

and X̃ Õ
2

which are in the same shape with Z
1

and Z
2

. Then Z
1

, Z
2

, X̃ Õ
1

, X̃ Õ
2

are employed to calculate the loss. The purpose the training stage is to
obtain the optimal parameters � of denoising network F . In the testing stage, only
F (�) is needed to perform the denoising operation.

Unlike the denoising network discussed above, no uncorrupted data Z set is avail-

able to train the network F (�) in a supervised way, and we can only exploit the data

sets from two identical experimental procedure (two replicates). Assuming an ideal

denoising network F (�) can remove all of the noise generated during the experimen-

tal process, and X
1

and X
2

are two data sets from two experimental replicates of the

61



www.manaraa.com

same sample from the same experimental procedure, F (X
1

, �) and F (X
1

, �) should

be identical since data sets X̃
1

and X̃
2

reflect the same clean data.

The topology of the denoising Siamese network is shown in Fig. 4.2. In the

training process, the input is two experimental replicates X̃
1

and X̃
2

for the same

type of samples. The convolutional neural network is employed as the denoising

network F (�) and � is the parameters (weight and bias) in the network. After

training, only F (�) is needed to apply to the noisy data.

In training, to compare the proposed clean data Z
1

and Z
2

, the raw data X̃ Õ
1

and X̃ Õ
2

is processed to the same dimension as Z
1

and Z
2

by removing the padding margin. In

the following step, Z
1

, Z
2

,X̃ Õ
1

and X̃ Õ
2

is combined as the input for the loss function. In

prediction, F (X̃, ◊) is used to reconstruct clean data Z from corresponding corrupted

version X̃

In the verification problem, to extract the key features, the dimension of the

representation Z is usually much smaller than the raw form X. For example, in face

verification (Chopra, Hadsell, and LeCun 2005), the raw form for each sample is 56

◊ 46 pixels, and representation for comparison is only a vector with a length of 50.

In our project, we will keep Z’s dimension the same with X except for the proper

padding removal during the convolutional operation to calculate the loss.

Loss Function

A desired denoising network F (�) should have two properties:

• The denoised data sets F (X̃
1

, �) and F (X̃
2

, �) should be similar.

• The loss of the signal should be minimal

We use L
S

to represent similarities between denoised data sets, and Euclidean

distance is utilized as the metrics describe L
S

(Eq. 4.3)
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L
S

= ||Z
1

≠ Z
2

|| (4.3)

where Z
1

= F (X̃
1

) and Z
2

= F (X̃
2

)

To evaluate the loss of the signal during the denoising process, we propose the

average of denoised data Z
1

and Z
2

should be the same with the average of raw data

(X̃
1

, X̃
2

). Therefore, we design the metrics L
D

as shown in Eq. 4.4.

L
D

= ||(Z
1

+ Z
2

) ≠ (X̃ Õ
1

+ X̃ Õ
2

)|| (4.4)

where X̃ Õ
1

and X̃ Õ
2

are raw data with padding region removed to match the dimension

of Z
1

and Z
2

.

Based on L
S

and L
D

, we define the loss function in Eq. 4.5.

L = ⁄L
S

+ L
D

(4.5)

where ⁄ is the hyper-parameter to adjust the noise level to be removed.

In the loss function, the ratio between L
S

and L
W

is the hyper-parameter(⁄).

When the ⁄ value is large, the denoising network F (�) will focus on removing noise

to minimize L
S

. On the contrary, when ⁄ is small, the F (�) will keep the output Z
1

and Z
2

similar with their raw form X̃ Õ
1

and X̃ Õ
2

, respectively.

Convolutional Neural Network

Convolutional Neural Network (CNN) has been proven to be e�ect to reconstruct

uncorrupted data from corrupted data sets (Dong et al. 2014; Dong et al. 2016;

Burger, Schuler, and Harmeling 2012; Koh, Pierson, and Kundaje 2017; Y. Zhang

et al. 2017). Therefore, we employ the CNNs as the denoising network in this work.

Our basic CNN structure is acquired from previous work (Dong et al. 2014; Dong

et al. 2016; Y. Zhang et al. 2017), where three convolutional layers are utilized, and

the output from the last convolutional layer is the final output without any fully
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connected layers. We illustrate our CNN in Fig. 4.3. Comparing with the previous

work (Dong et al. 2014; Dong et al. 2016; Y. Zhang et al. 2017), we add two noise layer

to prevent the model just "copy" the noisy input data to the output. The selection

of parameters in CNNs, including the filter number and filter size, will be discussed

in the following section.

Figure 4.3: Structure of CNNs in siamese network. The output of last convolutional
layer is also the output layers. The noisy layer using Gaussian dropout method as
describe in (Srivastava et al. 2014)

Training of the network

As discussed in the section of the loss function, the training process is to minimize the

L in Eq. 4.5, which is always a positive number. In our implementation, we simply

set the target value for Y = 0, and use the standard backpropagation to obtain the

minimal L according to Eq. 4.6.

argmin(L ≠ Y )2 (4.6)

4.3 Evaluation on Simulated Noisy Data

To validate the performance of our approach, we test our method on simulated data.

Since any data from experiments may contain noise, we choose the MNIST data sets

of handwritten digits (LeCun et al. 1998) for our test. The 28 ◊ 28 matrices of the

MNIST input are employed as the clean data. To generate noisy data, noise is added

to the clean data to simulate the data corruption process in an experiment. Finally,
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our approach is applied to the noisy data, and the performance will be evaluated by

comparing with the clean data.

4.3.1 Generating Noisy Data

The clean MNIST data is rescaled to range between 0 and 1. The simulated noisy

data is generated in the following step:

1. Considering the matrix wound shrink during the convolutional operation, the

width 6 white padding region is added to surrounding original 28 ◊ 28 matrix

, and 40 ◊ 40 matrix is obtained.

2. The white Gaussian noise N (0, 0.5) is added each pixel in the matrix, including

the newly added padding region.

3. To add the complexity of the noise, we set all values x on the noisy data matrix

according to Eq. 4.7.

x =

Y
______]

______[

0 if x < 0

1 if x > 1

x otherwise

(4.7)

In the simulation process, the MNIST clean data sets X is independently processed

twice by the procedure described above to generate two corrupted noisy data X̃
1

and

X̃
2

in the training datasets. The clean data set X and the procedure would not be

accessed in the model training process in any form.

The testing data is generated by the same procedure by adding noise to the clean

data X to get X̃. The training sample size is set at 50000 and the testing sample

size is set at 10000. There is no overlapping between training samples and testing

samples.
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4.3.2 Evaluation

We study the performance on di�erent hyper-parameters in CNNs as discussed in the

supplementary material. The result is not quite sensitive to hyper-parameters, and

we determine the first size on each convolutional layer are 3 ◊ 3, 7 ◊ 7 and 5 ◊ 5,

respectively.

We utilize three metrics to evaluate the similarity between denoised data and

original clean data: 1) Mean Squared Error(MSE), 2)average Pearson correlation for

each sample, 3)Peak signal-to-noise ratio(PSNR). Since the original clean data in

MNIST is range from 0 to 1, the denoised data is re-scaled to between 0 and 1 to

calculate all of these metrics.

4.3.3 Impact of ⁄

Figure 4.4: The output of the denoised results with di�erent ⁄ value. ⁄ = 1.5 is the
optimal in these samples
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Table 4.1: Comparing the results obtained at di�erent ⁄ value. ⁄ = 1.5 is the optimal
in these samples

⁄ MSE Pearson Correlation PSNR
Noisy Input 0.1156 0.5504 9.3

0.0 0.1090 0.5545 9.62
1.0 0.0487 0.7441 13.13
1.5 0.0252 0.8780 15.99
2.0 0.0262 0.8670 15.81
5.0 0.0428 0.7567 13.68

According to Eq.4.5, we expect that larger ⁄ value will lead the model to remove

noise more aggressively, and smaller ⁄ will keep more information of the original

noisy data. Herein, we investigate the impact of ⁄ by setting ⁄ with five di�erent

values (0.0, 1.0, 1.5, 2.0, 5.0) with optimal network topology of CNNs. In Table 4.1,

we compare the dissimilarity between denoised data and the original clean data quan-

titatively. The ⁄ value between 1 and 2 obtain good results, and the outcome is the

best when ⁄ = 1.5 We draw the noisy input, original clean data and the denoised

data with di�erent ⁄ value for several examples in Fig. 4.4. Consistent with the quan-

titative metrics, the best result is obtained when ⁄ = 1.5. Clearly, when ⁄ is small,

the denoised output data still contains high-level noise, and the noise looks the same

with the noise in the input data, indicating the model mostly "copied" the input data

to the output without removing noise. On the other side, when ⁄ is large (⁄ = 5),

the noise is nearly completely removed, however, the signal is also partially removed.

4.3.4 Compare denoised data with averaging multiple experimental

replicates

Obtaining multiple replicates need extra resources, and the previous discussion has

proven our approach can achieve higher quality of the experimental data than a single

replicate. Here, we compare the performance of our method with averaging results
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Figure 4.5: Compare our approach with averaging multiple experimental replicates.
On the left, we plot noisy input data, our denoised result, ground truth and the
result generated by averaging multiple noisy replicates. On the right, we evaluate the
performance in Pearson Correlation and PSNR. Our denoised result is better than
averaging the results of 5 and 30 parallel experiments in measurement of Pearson
correlation and PSNR, respectively

from multiple replicates. To simulate multiple replicates of the experimental data,

we employ the same procedure independently to add noise to the original clean data

X to obtain multiple corrupted version of X̃
i

. Then, we average the number of noisy

data (N) to compare with the original clean data using the same metrics (Pearson

correlation, PSNR). In Fig. 4.5, we give several examples as well as the quantitative

metrics to compare the performance. In the right panel of Fig. 4.5, our denoised

result is equivalent to the average of more than eight experimental replicates. From

the examples shown in the left panel, our denoised result is at least better than

average three replicates. By comparing the performance, we can conclude that by

applying our denoised approach, at least 2/3 experiment resources can be saved to

obtain the same quality of the data.

4.4 Application on Hi-C data

Denoising of Hi-C datasets is desired by biologists to enhance sign-to-noise ratio. Hi-

C also provides a proper example for evaluating the performance of our new approach.

In this work, to train the denoised network F (�) for Hi-C, we employ two biological

replicates generated independently by the same protocol including benchwork as well
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as data processing (Rao et al. 2014).

4.4.1 Preprocessing

The Hi-C signal intensity N
A

, which reflects the distance in 3D space, is strongly

e�ected by the distance between two loci along the DNA sequence (a.k.a genomic

distance), and it is important to compare the relative signal intensity N
R

with other

pair loci on the same genomic distance. Therefore, we calculate the relative signal

intensity N
R

by Eq. 5.5

N
R (i,j)

= N
A (i,j)

M
A

(|j ≠ i|) (4.8)

where N
A (i,j)

is the Hi-C signal intensity between loci i and j, and M
A

(|j ≠ i|) is the

mean value of Hi-C signal intensity at genomic distance |j ≠ i|

A Hi-C dataset is a large matrix spanning the entire genome, so we divide the

whole Hi-C matrix into 40 ◊ 40 patches with proper overlapping to cover the loss of

surrounding region during the convolutional operation. Since most of the biologically

meaningful features exist to the region when loci are close to each other, we pick the

patches containing the region where two loci are less than 400 loci long.

4.4.2 Results

We employ the same topology of CNNs and use the same settings with the Siamese

network on the simulated MNIST data. The training data is obtained from the first

chromosome, and the testing data is obtained from Chromosome 18. After denoised

on each patch of the testing data sets, we recombine the patches into the whole Hi-C

matrix. To compare with Hi-C matrix in the absolute intensity, we also multiply the

mean at its genomic distance to denoised Hi-C matrix to restore the absolute value.

In Figure. 4.6a, we illustrate our denoised result by plotting the Hi-C interaction

heatmap. Since there is no ground truth of the experiment, we list the raw and
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denoised data of both replicates. From the comparison, we can observe that on the

raw data, although two replicates share the major features (e.g. domain and loop

peak), the detail is much di�erent between two replicates because of the noise. The

denoised process removes most of the noise and obtains very similar output from two

di�erent replicates.

Since the clean, true signal of Hi-C is unknown, we validate the model performance

by another type of biological data set, CTCF ChIA-PET (Tang et al. 2015), of this

type of cells. The CTCF ChIA-PET also reflects the 3D interaction between loci

on the genome, but only focuses on the loci where the CTCF exists. CTCF is a

protein closely related to the formation of the 3D structure of the genome, and the

loci pair with CTCF ChIA-PET signal are expected to have stronger relative Hi-C

signal as well. We pick all of the signal points which are eligible to have CTCF ChIA-

PET signal, then define those which signal CTCF ChIA-PET observed as positive

samples and those eligible but no signal observed as negative samples. After obtaining

the positive and negative labels, we employ precision-recall curve to compare the

performance of raw and denoised Hi-C matrix in Fig. 4.6b. As expected, our denoised

Hi-C matrices outperform the raw matrix, and the best result is obtained when ⁄ =

1.5, which is consistent with the simulation data.

4.5 Conclusions

In this work, we propose a novel approach to learn the denoising model at the sit-

uation where ground truth is unavailable as the training set. The denoising model

is composed of convolutional neural networks which have been proven to be e�ective

in noise removal. Our approach solves the challenge that no clean version of the

training set is available in experimental science. We design the Siamese structure

and proper loss function, allowing the model to learn to di�erentiate the true signal

and the noise. The approach is tested on both simulated data and real experimental

70



www.manaraa.com

(a) (b)

Figure 4.6: The performance of the denoising network on Hi-C data. 4.6a is an
example focusing on the region with a loop peak (Rao et al. 2014), and denoised data
enhances the signal of the peak by removing the noise in the background; 4.6b is the
biological validation by CTCF ChIA-PET data (Tang et al. 2015) by the precision-
recall curve, indicating the biological significance of our denoising approach.

data from Hi-C and is proven to be e�ective in noise reduction.

Our approach can be applied to many experimental fields, especially for those

with the signal in 2D dimension. When applying this approach to di�erent fields,

it is also important to study the level of the noise removal (⁄ value) to balance the

noise reduction and signal loss. Since the mechanism of this strategy is removal the

volatile noise from the stable signal, it has great potential to several fields other

than experimental data(e.g. remove isolated moving objects from stable landscape in

image).
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Chapter 5

Multiple-level Comparative Analysis of Hi-C

Data by Triplet Network

5.1 Introduction

The Hi-C technique (Lieberman-Aiden et al. 2009; J. R. Dixon et al. 2012; Jin et

al. 2013) can measure chromatin interaction intensities between any two loci on the

chromosomes, and has become a powerful tool to dissect the spatial structure of the

mammalian genomes. Since its birth, it has greatly expanded our knowledge of the 3D

genome organization and has lead to several seminal discoveries such as Topological

Associating Domains(TADs) (J. R. Dixon et al. 2012; Nora et al. 2012) and chromatin

loops (Rao et al. 2014). As it attracts a lot of research interest in recent years, Hi-C

has been performed in many cell and tissue types in several species and presents an

invaluable resource for the study of gene regulation and in particular, how the changes

in 3D genome organization can lead to di�erential cellular functions. Therefore, it is

critical to develop the computational tool for quantitatively comparing Hi-C signals

and identify the variations from di�erent tissue/cell types.

5.1.1 Comparative analysis of Hi-C data sets

Currently, there are two major approaches for the comparisons of Hi-C interaction

matrices (i.e., whole matrix-based approaches and feature-based approaches).
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Matrix-wise comparison of Hi-C data

Hi-C data are usually presented as an N ◊ N interaction matrix, where N is the

number of bins along the genome and the value of each point indicate the number of

pair-ended reads whose two ends are mapped to two di�erent bins. Currently, Pearson

correlation and Spearman correlation are commonly used to evaluate the similarities

of the Hi-C matrices, and it works by converting the two-dimensional matrix into a

one-dimensional vector and compute the coe�cient (Lieberman-Aiden et al. 2009).

More recently, a stratum-adjusted correlation coe�cient method (HiCRep) (T. Yang

et al. 2017) has been developed and has been shown to outperform Pearson and

Spearman correlations. Essentially, it works by assigning the di�erent weight for

correlations at di�erent distances.

However, the correlation-based approaches so far can only be employed to eval-

uate the reproducibilities/similarity for two Hi-C interaction matrices, and cannot

reveal locations where the variations exist. Also, Pearson correlation and Spearman

ranking correlation, as well as their transformation forms, cannot serve as a metrics

of "distance".

Another potential class of matrix comparisons on Hi-C using the statistical models

to detect the significant interactions on Hi-C (Ay, Bailey, and Noble 2014; Carty

et al. 2017), and convert the Hi-C matrix into a binary form(i.e. significant vs not

significant) for the comparative analysis. These approaches address the distance e�ect

on Hi-C and remove some systematic bias in the Hi-C experiments but still have

limitations: 1) the high-noise level on Hi-C can lead to falsely identified significant

interactions sometimes unreliable, e.g. significant interactions didn’t always overlap

in two experimental replicates for the same cell type; 2) the statistical model usually

assumes a particular kind of the distribution (e.g., Poisson (Ay, Bailey, and Noble

2014) and negative binomial (Carty et al. 2017)) of the Hi-C interaction intensity, and

the assumption may be too simplified considering the complexities of the Hi-C data.
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3) Matrix-wise approaches don’t consider the surrounding region when calculating

the probability of the significance.

Feature detection and comparison on Hi-C

Another approach to compare Hi-C data is to extract certain features from Hi-C

interaction matrix first and then perform the comparative analysis. As mentioned

above, several patterns have been discovered from the Hi-C interaction heatmap, such

as TADs (J. R. Dixon et al. 2012) and A/B compartment, and it is useful to compare

the di�erence of these features across cell types.

Currently, a rule-based model is usually implemented to determine the patterns

on the entire genome, such as TADs (J. R. Dixon et al. 2012), loop peaks (Rao et al.

2014), and frequently interacting regions (FIREs (A. D. Schmitt et al. 2016)). Essen-

tially, the feature extraction can also be regarded as the dimension reduction process,

e.g. both (J. R. Dixon et al. 2012) and (A. D. Schmitt et al. 2016) employ the in-

formation of k upstream and k downstream interactions of a locus, and reduce the

information from size 2 ◊ k + 1 of to a single latent variable to represent state of the

loci, and name the states as "degree of upstream or downstream interaction bias" and

"FIRE score", respectively, based on the biological explanations. When assigning the

states/score to a locus, the above-mentioned feature extractions incorporate the in-

formation from surrounding regions, leading to the several essential scientific findings

on the chromatin spatial conformations. The feature detected by these approaches

have been used as finding the variations (Rao et al. 2014; A. D. Schmitt et al. 2016;

J. R. Dixon et al. 2012) on the Hi-C matrices but still have some disadvantages: 1)

One rule can usually define one kind of state. Due to the complexity of Hi-C data,

it is not practical to inspect all of the informative patterns on Hi-C by predefined

rules; 2) Due to the noise level of the Hi-C, some features detected by rule-based

approaches are not consistent with the results from another experimental replicate,
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making it di�cult to distinguish the true biological variations from random variations

due to noises in the experiments.

5.1.2 Our contribution

Inspired by previous work on the Hi-C pattern extraction (J. R. Dixon et al. 2012;

A. D. Schmitt et al. 2016), we project the high-dimension Hi-C interaction matrix to

a vector of latent variables. Instead of pre-defining some rules for the projection, we

employ the convolutional neural networks with trainable parameters to achieve this

goal.

The convolutional neural networks contain multiple levels of the nonlinear filtering

process, which enable the model to catch more complicated patterns comparing with

simple arithmetic operations in the rule-based approaches. After obtaining the latent

variables of the Hi-C matrices, the Euclidean distance is calculated to represent the

distance between the Hi-C matrices.

The input to our triplet network are three Hi-C interaction matrices: two of

them are biological replicates from the same cell type, and the third one is from a

di�erent cell type. We assume the di�erence between two biological replicates are

minimal and are introduced by normal experimental variation. Using the triplet loss

as the training target, the model can automatically update the parameters in the

convolutional neural networks to obtain optimal latent variables that contain most

significant patterns in the raw Hi-C data.

When comparing two Hi-C interaction matrices, it is challenging to distinguish

the actual biological di�erence from the random noises. Here, our triplet network

uses the two experimental replicates from the same cell types as an estimate of the

natural noise level, and further employ this information to capture variations are

between two cell types are above the random noise level.

Finally, we adopted the systematic occlusion approach in our framework, which
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can identify specific variation regions on two Hi-C maps. The output of this step is

a heatmap of di�erent scores and its size is the same as the original Hi-C matrices.

The di�erent scores obtained by HiCComp not only contain the information of the

corresponding pixels of raw Hi-C matrix but also considering the nearby regions as

well as the noises generated in the Hi-C experiments. The entire process has no

manual intervention, and all of the results are generated automatically from the

model.

5.2 Method

5.2.1 Deep Neural Networks

In recent years, deep neural networks, also known as deep learning, achieve great

success in multiple domains (Goodfellow, Bengio, and Courville 2016; LeCun, Bengio,

and G. Hinton 2015; Schmidhuber 2015). In genomics and epigenomics, deep learning

has been applied to predict protein binding sites of DNA (Alipanahi et al. 2015; Jian

Zhou and Troyanskaya 2015; H. Zeng et al. 2016; Quang and X. Xie 2016) and the

experimental data enhancement (Koh, Pierson, and Kundaje 2017; Y. Zhang et al.

2017). Deep learning employs multi-layered neural networks to process the raw input

data multiple times and extracts relevant high-level features of the raw data. The

parameters in the deep neural networks are updated by gradient-based optimization

strategy, and the criterion for the optimization is loss function. The loss function

is carefully designed to reflect the gap between network output and the ideal cases.

Based on the training datasets provided and the loss function, the neural networks

will extract the essential features in the raw data to minimize the loss in the training

data sets.
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5.2.2 Triplet Network

In the typical prediction task (including classifications and regressions) of deep learn-

ing, a large volume of labeled samples are required to train the network, where the

labels reflect the real state of the samples. In the context of Hi-C data sets, we im-

plemented the triplet network with corresponding triplet loss to train the network.

Triplet loss (Ho�er and Ailon 2015; Balntas et al. 2016; J. Wang et al. 2014; Wohlhart

and Lepetit 2015) is a ranking-based loss function and widely used to compare the

similarity of images. The network topology in our model is shown as Fig. 5.1.

The input samples for triplet network are in form of (X, X+, X≠), where X is

anchor, X+ is positive which belongs to the same class of X, and X≠ is negative

which belongs to di�erent class of X. Specifically in this project, (X, X+, X≠) are Hi-

C matrices: anchor X and positive X+ are Hi-C data from two biological replicates

in the same cell type, and negtaive X≠ is Hi-C data from another cell type.

The three instances in input samples X, X+ and X≠ are processed independently

through the multilayer neural networks F (X, �) with identical topology and shared

parameters for the feature extraction and representation, and converted to three vec-

tors of latent variables Z, Z+ and Z≠, respectively. The multi-layer neural networks

F (X, �) for each input instance have shared parameters �, and � will be updated

in the training process via gradient descent according to the triplet loss function.

After obtaining the latents variables Z, Z+ and Z≠, the Euclidean distance D+

and D≠ are calculated, where D+ = ||Z+ ≠ Z|| and D≠ = ||Z≠ ≠ Z||. The triplet

loss L(D+, D≠) is calculated according to the Eq. 5.1.

L(D+, D≠) = 1
N

A
Nÿ

i=1

max{D+ ≠ D≠ + M, 0}
B

(5.1)

where D+ and D≠ the Euclidean distance from positive and negative to anchor,

respectively, and M is the margin value. The margin M prevents the model lazily set

all latent variables to zero to achieve L = 0. In this project, we set M = 1 arbitrarily
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Figure 5.1: The network topology of our approach. The model proposed in this work
contains three convolutional neural networks, with identical structures and the shared
parameters. For each input Hi-C sub-matrix, the convolutional neural networks con-
vert the Hi-C from its raw form to a vector of latent variables. Each sample contains
three Hi-C sub-matrix from the same genomic location. Typically, anchor X and
positive X+ are from two biological replicates of the same cell types, and negative
X≠ is the Hi-C data in another cell type. All of the Hi-C sub-matrix shown in Fig.
5.1 are from chromosome 18: 6.15M-6.25M. The X and X+ are from GM12878, and
X≠ is from K562. The Euclidean distances from anchor to positive D+and negative
D≠ are calculated to pass to the loss calculation. The loss function is shown in Eq.
5.1.
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since the range of absolute value of Z, Z+, Z≠ doesn’t a�ect our the result, and we

focus on the relative distance between D+ and D≠.

Figure 5.2: The structure of the convolutional neural networks. Our networks contain
convolutional layers with ReLU activation (Glorot, Bordes, and Bengio 2011), max
pooling layers, and fully-connected layers. In a typical structure, the networks include
three convolutional layers, three max pooling layers, and two fully connected layers.
The output is a vector of latent variables, and the length of the vector, as well
as detail about the structure of convolutional neural networks, will be discussed in
section 5.3.1.

5.2.3 Convolutional Neural Networks

In this work, F (X, �) is implemented by convolutional neural networks (LeCun et al.

1998), which is the combination of multiple convolutional layers, nonlinear activation

layers, pooling layers, and fully connected layers. Convolutional neural networks are

powerful to detect the highly correlated local motifs in the raw data, and such local

motifs are invariant to the locations. In Hi-C interaction heatmap, the chromatin

interaction patterns, such as loop peaks or boundaries of TADs, can be regards as

such local motifs. The structure of the networks in F (X, �) is shown in Fig. 5.2,

and we will discuss the detail hyper-parameters later. We employ standard gradient

descent (SGD) (Sutskever et al. 2013) and L2 regularization in the training to update

parameters � in F (X, �) to minimize triplet loss L(D+, D≠).

5.2.4 Sample Processing

Unless otherwise noted, all of the Hi-C data used in this project are raw Hi-C in-

teraction matrices from (Rao et al. 2014) at 10kb resolution. We used the two bio-

logically replicates in GM12878 as anchor and positive. We chose IMR90 and K562
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as the source of negative for training and testing, respectively. To ensure that all of

the Hi-C matrices have the same overall interaction intensities, we down-sampled all

of the Hi-C interaction matrices to the same sequencing depth based on the lowest

sequenced replicate (K562 in this case).

Considering most of significant chromatin interactions on Hi-C matrix are within

1Mb TADs, we divided the Hi-C matrix into 100 ◊ 100 segment along the diagonals

(Fig. 5.3) to generate the data sets (X
1

, X+

1

, X≠
1

), (X
2

, X+

2

, X≠
2

), ...(X
i

, X+

i

, X≠
i

),...

(X
n

, X+

n

, X≠
n

). The samples are divided in the same order to ensure the samples with

the same index i present the Hi-C patches from the same genomic locations for all

kinds of cell types.

In the training dataset, there is no overlap between the samples, and testing data

sets may contain overlapped samples depending on the usage. The lower right part of

the Hi-C is set to zero for all of the samples since the Hi-C patches are symmetrical

along the diagonal. The training data sets utilized GM12878 rep. 1, GM12878 rep.

2, and IMR90 as the anchor, positive and negative, respectively. Chromosomes 1-8

are used as training set, and 6218 samples are generated.

5.3 Results

5.3.1 Impact of choice of hyperparameters

Number of latent variables

As discussed above, feature extraction is essentially a process of the dimension reduc-

tion for the raw data. In the previous work, one latent variable are used to represent

the chromatin interaction bias (directionality index) (J. R. Dixon et al. 2012) and

FIREs score) (A. D. Schmitt et al. 2016)), and N latent variables are used to represent

a Hi-C matrix with length of N .

In this work, suppose each Hi-C submatrix can be represented by n variables,
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Figure 5.3: Dividing chromosome-wide Hi-C matrix into sub-matrix for training and
prediction. The Hi-C matrix is divided into small 100 ◊ 100 sub-matrices along the
diagonal. On the lower left, we show the dividing without overlap for the training
and validation data sets. On the upper right, the sub-matrices are overlapped with
each other for the downstream analysis

the dimension of entire Hi-C matrix is reduced to a n ◊ N when we divided the

Hi-C matrix to sub-matrices of (1, 100), (2, 101), ...(N ≠ 100, N), when the size of the

submatrix is 100◊100. Since Hi-C is detecting the 3D structure of the chromatin, the

number of the latent variables should be at least 3 (n > 3), and n = 3 if chromatin is

static and the entire group of the cells in the experiment share the same chromatin

3D structure. Therefore, we set up our experiments starting from n = 3 and with

an increment of 2. The number of latent variables is adjusted by the dimension of

the output in the last fully-connect layer with other hyperparameters in the model
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remain the same.

We trained the model on (GM12878 rep. 1, GM12878 rep. 2, IMR90) and

calculate the validation error on the same chromosomes of (GM12878 rep1, GM12878

rep2, IMR90) . As shown in Fig. 5.4, the triplet loss decrease as number of latent

increase from n = 3 to n = 7, and remain the same when n = 7. Therefore, we use 7

latents variables to represent the 100 Hi-C patches.

Figure 5.4: Relationship between the loss and the number of latent variables. We
tested the di�erent length of latent variables Z by changing the output of last fully-
connected layer with other hyper-parameters in the network unchanged.

Hyper-parameters in convolutional neural networks

As shown in Fig. 5.2, the convolutional neural networks in our model contain several

convolutional layers and pooling layers, so it is important to find the optimal number

layers for the following study. The filter numbers for all of the convolutional layers

are 8, and each 2D convolutional layer is followed by a 2D max pooling layer with

the size of 2 ◊ 2. After the convolutional layers, there are two fully connected layers

82



www.manaraa.com

with the number of hidden nodes 500 and 10. In the comparison, we implemented

the four networks with 1 to 4 convolutional and pooling layers, respectively, and all of

the settings remain constant except the number of layers. The 2D filters size of each

layers are 9, 9-3, 9-3-3, and 9-3-3-3 for the models with 1, 2, 3, and 4 convolutional

layers, respectively. As shown in Fig. 5.5, the model with 3 convolutional layers

achieves the minimum triplet loss on validation dataset.

Figure 5.5: Performance of the convolutional neural networks with di�erent convolu-
tional layers.

5.3.2 Our proposed distance reflects the similarity of the chromatin state

We trained our convolutional neural networks with Hi-C interaction matrices from

chromosomes 1-8 and tested its performance on chromosome 18. To generate the

"di�erence" interaction matrix between GM12878 and K562, we divided chromosome

18 into 100x100 sub-matrix along diagonal with 100≠1 = 99 overlapped loci between

adjacent samples. Donating the total bins on chromosome 18 is N , the sub-matrices

with index 0 to N ≠ 100 are come from the location (1, 100), (2, 101)...(N ≠ 100, N).
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Figure 5.6: HiCComp identified variations in Hi-C interaction matrices. On the top,
we plot the Hi-C interaction heatmap along the diagonal of K562 and two experimen-
tal replicates from the experiment. All of the Hi-C matrices are down-sampled to the
same sequencing depth, and the color scale is the same (min = 0, max = 50). The
middle part is the enrichment of the 1D epigenomic signal, and we show two ChIP-
Seq tracks (CTCF and DNase) which have been shown to be related to the spatial
structure. The lower part is the similarities evaluated by di�erent approaches, and
the similar on loci k reflects the sample range from k ≠ N/2 to k + N/2. Besides our
approach, we also implemented pixel subtraction of two 100 ◊ 100 Hi-C matrix(Eq.
5.2).
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For the initial evaluation, we use the central location to represent the similarity of

the each sample, e.g., the sample (0:100) donates the similarity of loci 100/2=50. As

for the baseline, we used a naïve approach where we subtract the matrix in GM12878

from the K562 interaction matrix.

D
pixel

=
ÿ

i,j

|a
ij

≠ b
ij

| (5.2)

In Fig. 5.6, we draw a comparison of Hi-C matrix, 1D epigenomic signals related

to the spatial structure (CTCF (Rao et al. 2014; J. R. Dixon et al. 2012) and

DNase[ (Schreiber et al. 2017; Mourad and Cuvier 2015; Sutskever et al. 2013)), as

well as distance (D+, D≠). Pixel subtraction and HiCComp can catch the general

trend of the variations on the Hi-C. We also observed pixel-wise subtraction are

too smooth and not very sensitive to small-scale variations, such as loops. It also

looks the absolute interaction intensity strongly a�ects the distance calculated by

pixel subtraction approaches. HiCComp identifies the exact locations of the Hi-C

variations across cell types.

5.3.3 HiCComp identifies the exact locations of the Hi-C variations across

cell types

By initial visual inspection, our proposed feature-level distance (D) can reflect the

di�erence among Hi-C matrices, but such dissimilarities are based on the average of

100 ◊ 100 Hi-C sub-matrix. Considering the region with 100 ◊ 10kb = 1mb base

pairs is still too large to identify biologically significant variations, we need to further

identify the precise locations of the variations between cell types.

In computer vision, systematic occluding the input images and record the change

in the output is an e�cient way to detect the essential regions for making the accurate

predictions. For example, in dog breed classification, occluding dog’s face will make

the prediction accuracy significantly drop while occluding another part will not e�ect
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the output much (Zeiler and Fergus 2014). Therefore, we perform the occluding for

our Hi-C samples to identify the critical regions for the model to distinguish whether

the Hi-C patches are from the same cell types or not.

Impact of the occlusion on the samples

In Fig. 5.7 and Table 5.1, we demonstrate how the change in the distance D+ and D≠

when occluding di�erent 8 ◊ 8 windows on the Hi-C sample. For all three Hi-C sub-

matrices in the same sample set, the occlusion windows located in the same genomic

location, and we fill the windows with zeros to replace the original Hi-C interaction

intensities. As shown in Fig. 5.7 and Table 5.1 when we the occluding window at the

location where the Hi-C patch are highly similar (Occlusion 1), the gap between D+

and D≠ is nearly unchanged. However, when the occlusion window is located in a

region where the chromatin interactions are di�erent, it leads to a dramatic change in

the di�erence score (Occlusion 2). For example, in Fig. 5.7 lower panel, the occlusion

window is located within a strong TAD region in K562, but there is no signal in

GM12878, and as a result, it deviated dramatically from the original matrix.

Table 5.1: Di�erence in the change of the distances D caused by di�erent occlusions
as shown in Fig. 5.7

D+ D≠ max(0, D≠ ≠ D+) change
No occluding 4.16 5.46 1.30 NA
Occluding 1 4.07 4.31 0.24 1.06
Occluding 2 4.29 5.59 1.30 0

Generate the difference scores using systematic occlusions in the entire

Hi-C matrix

Since the occlusion can e�ectively reflect the importance of a region, we systematically

occluded the entire Hi-C sample to obtain the variation scores on entire Hi-C heatmap
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Figure 5.7: Occluding di�erent part of the samples has di�erence e�ect in determining
the di�erence between two Hi-C matrices. Occlusion 1 removes the region all sample
Hi-C matrices are highly similar, and Occlusion 2 removes the regions where the
interaction pattern is di�erent. The impact of the quantitative metrics is shown in
Table. 5.1

as the following steps.

(a) For each sample (X, X+, X≠) in the testing data sets, we slid the occlusion

window step by step through the entire matrix for three Hi-C sub-matrices.

Donating the sliding window size is w◊w and the Hi-C matrices size are N ◊N ,

this step will generate (N ≠ w) ◊ (N ≠ w) new occlusion samples. In this study,

we set window size w to 8 considering the known pattern such as loops and

domain boundaries are usually smaller than 8 in at least one dimension.

(b) Run the prediction on occlusion samples using the model as testing samples,

and calculate the new gap G
i

from the new distance according to Eq. 5.3, then

calculate the gap change during the occlusion by Eq. 5.4 as the di�erence scores

the pixels inside the occlusion window.
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G
i

= D≠
i

≠ D+

i

(5.3)

where i is the index in the newly generated occlusion samples.

S
i

= max(0, G
0

≠ G
i

) (5.4)

where G
0

is the gap for the original unoccluded sample and also calculated

by Eq. 5.3. The di�erence scores can be explained as the gap shrunk during

the occlusion process. If the di�erence of D+ and D≠ decrease a lot after the

region is occluded, the area is important for the model to distinguish whether

the sample pairs are from the same cell types. Otherwise, the model cannot

infer the variation across cell types at this region is beyond the experimental

variations between two experimental replicates.

(c) A pixel on Hi-C patches may be covered by occlusion windows many times

in di�erent occlusion samples, and we calculate the di�erence scores for this

pixel by averaging the di�erence scores of all occlusion samples containing this

pixel. After generating the di�erence scores matrix for each sub-matrices, we

combined all of the samples to generate the di�erence scores for the entire

chromosome. For the regions covered in several samples, similar to the previous

step, we use the mean of all scores in the pixel as the final idi�erence scores.

For di�erence scores matrix from pixel subtraction, we also divided the Hi-C

interaction value C
i

on by the mean of the value in the same distance to eliminate

the distance e�ect on the Hi-C matrix.

C
(x,y)

=
Craw

(x,y)

C
mean

(|y ≠ x|) (5.5)

where M
mean

(|y ≠ x| is the mean value of Craw at genomic distance |y ≠ x|
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Figure 5.8: Systematic occlusion helps HiCComp capture dynamic interactions in
Hi-C interaction matrices. Upper: Hi-C raw matrix(color scale: 0-50); Middle: the
di�erence scores matrix generated by HiCComp and other approaches(warm color
indicates high di�erence scores); Lower: enrichments of the epigenomic markers(the
height indicates the relative enrichment level comparing with the global average).
The location of the variations called by our approach, HiCComp, are strongly linked
with the enrichment of the 1D epigenomic markers.
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Systematic occlusions reveal key interaction regions.

The result from the systemic occluding is shown in Fig. 5.8. The top part contains

Hi-C heatmaps from GM12878 and K562, and the di�erence score maps are shown

in the middle. For the comparison purpose, we also plot the enrichment level of

DNase and H2A.Z for both cell types in the lower panel. Surprisingly, our model

clearly indicates several significant variations which are not very obvious by visual

inspection (marked by blue boxes). Through the comparison with the 1D epigenomic

signal, these variations are linked with the di�erent chromatin state. The di�erence

score from pixel subtraction also catch some variations but miss several important

regions. It is interesting that some significant area can be observed manually (yellow

shading region) is indicated by HiCComp as the moderate level of the variations, and

the enrichment of DNase and H2A.Z are also only slightly di�erent across two cell

types in this region.

Validate the proposed Hi-C variations by the enrichment of 1D epigenomic

markers

The 2D signals of Hi-C are strongly linked with the 1D epigenomic makers (J. R.

Dixon et al. 2012; Rao et al. 2014; Sanborn et al. 2015; J. W. Ho et al. 2014; Y. Zhu

et al. 2016; Pancaldi et al. 2016; J. Huang et al. 2015; Y. Chen et al. 2016), which are

usually generated by Chip-seq. To quantitatively evaluate our result, we calculate the

enrichment of the epigenomic marker(obtained from (Bernstein et al. 2010)) using

the same bin size as Hi-C(10kb), then define the di�erence of the enrichment by Eq.

5.6.

D
Enrich,i

= |Enrich
1,i

≠ Enrich
2,i

|
Enrich

1,i

+ Enrich
2,i

+ tiny
(5.6)

where i is the location of the bin, Enrich
1,i

and Enrich
2,i

are the enrichment level

on bin i for two cell types, and tiny is a tiny number to avoid dividing by zero. The

range of D
Enrich,i

is 0 to 1.
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The enrichment di�erence is shown in Fig. 5.9 for chromosome 18 as the boxplot.

The baseline (as shown in black) is the D
Enrich,i

on all bins of chromosome 18 (≥ 7700

sample). To calculate the di�erence of 1D epigenomic signal on the locations where

Hi-C variations occur, we first take top 1000 bins with highest di�erence scores for

all of the methods (HiCComp, Pearson correlation, and pixel subtraction). For each

selected bin B
i,j

from the 2D matrix of di�erence scores, we use the di�erence of

the enrichment on the corresponding 1D bins D
Enrich,i

and D
Enrich,j

to represent

its location in the 1D chromosome. For the 1D bins which are included in several

selected 2D bins, we just include all of them without removing duplicate, so we

obtain a vector containing 2000 D
Enrich

for the box plot for the three Hi-C variation

detection approach. As shown in Fig. 5.9, the regions detected by HiCComp have

significant higher di�erence scores on the multiple types of the epigenomics marker,

especially for the CTCF, DNase, H1A.Z, H2K4me1. The Hi-C variations called by

pixel subtraction also have the higher level in the di�erence on the 1D epigenomics

marker but not as significantly as HiCComp.

5.3.4 Conclusion

Here we present HiCComp, a comprehensive framework based on convolutional net-

work and systematic occlusions, for the comparative analysis of Hi-C from di�erent

tissue/cell types. HiCComp can quantitatively compute the di�erences of Hi-C data

at whole chromosome-level and also simultaneously identify the particular locations

of the variations. We observe that the variations in Hi-C data identified by HiCComp

are enriched for transcription factor binding sites and histone modifications that are

associated with cis-regulatory functions, suggesting these variations in 3D genome

structure are potentially gene regulatory events. In this work, we have demonstrated

the usage of our framework to distinguish and identify variations in Hi-C data from

two cell types. In the future, we will further expand this work so that it can process
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Figure 5.9: The variations of the Hi-C can be validated by the enrichments of the
epigenomic markers. The box plot shows the 25th percentile, mean, and 75th per-
centile of each sample group. The groups shown in color contain the locations of
the variations on Hi-C called by di�erent approaches, and the baseline of the entire
chromosome is shown in black.
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multiple cell types together.
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